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1 Introduction

The main focus of this investigation is the understanding of the transition problem

in hypersonic flow. In general, the transition problem can be viewed as a multi-stage

process from an initial laminar state. For low-level background disturbances, and in the

absence of Morkovin bypasses, (whereby the processes leading to transition are bypassed

such that the flow changes directly from a laminar to a turbulent state) the "natural"

transition process is described by 6 serially occurring processes [1]: (1) generation and

occurrence of ambient and body-produced disturbance fields; (2) modification of these

initial disturbance fields by the body flow field; (3) interaction and internalization of this

modified disturbance field by the body viscous flow (also termed "receptivity"); (4)

amplification of this received/internalized disturbance field via normal modes as

described by linear stability theory; (5) the non-linear finite amplitude wave-wave

interaction and spectral broadening; and (6) finally, the end of transition characterized by

the first occurrence of Emmons spots or at least a significant deviation from laminar-like

heat transfer and shear behavior. In the hypersonic boundary layer, the transition process

is accompanied by large changes in both heat transfer and skin-friction drag. These

changes are important to the aerodynamic design of hypersonic vehicles since the

aerodynamic coefficients are very sensitive to the large changes in heat transfer and skin-

friction that accompany transition [2]. Furthermore, the stability and control of the

vehicle, as well as the structural design are also affected due to the increased thermal and

aerodynamic loading.

In attempting to describe the "natural" transition process, either the transition

approach or stability theory are followed. The transition approach is able to locate only

"transition". That is, either the onset or end of transition, depending on the measurement,
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is identified. This provides only a "transition" Reynolds number. Furthermore, the

transition approach provides no details of either the transition phenomena or the

disturbance mechanisms which cause transition. However, these details are important for

an efficient hypersonic vehicle design, and are obtained from stability experiments.

Thus, the approach used in this investigation utilizes stability experiments.

Stability experiments follow the principles of stability theory. This theory

assumes the existence of small waves, termed normal modes, propagating in a mean flow.

The two modes of interest in the present investigation are termed the first and second

modes [3]. The first mode is associated with velocity or vortical disturbances, an

example of which is the infamous Tollmien-Schlichting wave. On the other hand, the

second mode occurs only in high speed flows, and is present near the boundary layer

edge when the local Math number is supersonic relative to the wave phase velocity. This

condition occurs around a freestream Math number of 2.2 for flat plate flow. Physically,

this mode is associated with pressure or acoustic disturbances. Stability experiments

provide knowledge of the development and subsequent growth of these two modes,

which is crucial to understanding the transition problem.

The present stability experiments were conducted in a so-called "quiet" wind

tunnel. Previous hypersonic stability experiments, however, have been conducted in

conventional wind tunnels: i) Kendall [4] examined the Mach 8.5 flow past a sharp 4 °

angle cone; ii) Demetriades [5] examined the Mach 8.0 flow past a sharp 5 ° half-angle

cone; and iii) Stetson et al [6] examined the Mach 8.0 flow past a sharp 7 ° half-angle

cone. These sharp cone stability studies have provided a fundamental understanding of

the hypersonic boundary layer stability problem. However, in conventional tunnels the

primary source of freestream disturbances is sound radiation. The frequency content of

this incident radiation provides a stimulus to excite disturbances in the hypersonic

boundary layer which may lead to transition.
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Specifically, the influence of the free streamenvironmentis made evident by

comparingthe hypersonicconestability experimentaldata [6] with the linear stability

analysisof Mack [7]. Theexperimentaldatashowthepresenceof a harmonic,which is

approximately twice the secondmode disturbancefrequency. However, the Linear

Stability Theory (LST) predictsa dampingof suchdisturbances.Kimmel and Kendall

[8] usedbicoherenceanalysisto showthatthisharmonicwasa consequenceof nonlinear

wavepropagationin thehypersonicboundarylayer. Furthermore,unlikeLST, emerging

theoreticalapproachesusing the ParabolizedStability Equation(PSE)approach[9,10]

andtheDirectNumericalSimulation(DNS) approach[11]aresuitedfor describingthese

possible non-linear interactions seen in the experiment. None of these emerging

techniques,however, has shown any direct evidence of dominant higher frequency

harmonics as seen in the experiment. Thus, experimental stability data obtained in a

quiet tunnel is required to determine whether or not this harmonic is due to "high" free

stream disturbance levels. The design of these quiet tunnels is discussed next.

In order to provide a more reliable test environment for the experimentalist, the

NASA Langley Research Center has developed a series of supersonic/hypersonic quiet

tunnels [12]. In these facilities, the free stream noise is controlled at low levels by

maintaining the nozzle wall boundary layer in a laminar state. The quiet tunnel

attenuation of the disturbances typically found in conventional wind tunnels is discussed

next with reference to Figure 1.

Generally, three types of disturbances, Figure l a, exist in any hypersonic wind

tunnel: i) velocity, or vortical disturbances; ii) temperature, or entropy, disturbances, and

iii) pressure, or acoustic, disturbances. Valve noise introduced into the stagnation

chamber and particles within the stagnation chamber produce vorticity and entropy

disturbances within the stagnation chamber. Filters located upstream of the stagnation

chamber, and conventional meshes and screens within the stagnation chamber attenuate
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thesedisturbances. The entropy disturbances are usually negligible downstream of the

screens. Whereas, the vorticity disturbances are further reduced in size by designing a

large contraction ratio between the stagnation chamber and nozzle throat. The vorticity

disturbances are then stretched by the nozzle wall boundary layer until the disturbances

are relatively small within the model region. For quiet wind tunnels, "high" density

meshes and screens are used and are more efficient at attenuating the vorticity and

entropy disturbances. Thus, these disturbances are negligible within the test section

which is not always the case for conventional wind tunnels. The acoustic disturbances

are the primary source of freestream disturbances in conventional hypersonic wind

tunnels. These disturbances radiate from convecting eddies generated by the turbulent

boundary layer on the nozzle wall [13,14]. The acoustic disturbances radiate along Mach

lines emanating from the turbulent boundary layer as shown in Figure la. The principle

approach for reducing these acoustic disturbances is discussed next with respect to Figure

lb.

In order to reduce the amplitude of the acoustic disturbances, the boundary layer

along the nozzle wall must remain in a laminar state as far downstream as possible. This

is accomplished by the following three design features unique to the quiet tunnel: i) a

suction slot upstream of the nozzle throat to bleed off the boundary layer at the nozzle

throat [ 15], ii) a highly polished nozzle wall to minimize the transition-promoting effects

of roughness [16]; and iii) a straight contour downstream of the nozzle throat to delay the

development of G/)rtler vortices [17]. Due to these features, at a fixed freestream unit

Reynolds number transition moves further downstream along the nozzle wall (figure lb)

relative to the conventional tunnel (Figure l a), providing lower free stream disturbance

levels in the test section.

In summary, the quiet tunnel attenuates both the vortical and entropy disturbances

to negligible amplitudes. Furthermore, the acoustic disturbances are severely attenuated
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over most of the test section region where the model is placed. Such quiet tunnels are

ideally suited for stability measurements which assumes small waves propagating in a

mean flow as previously discussed. Thus, the quiet tunnel was used in this investigation

to accomplish the following two primary objectives: i) to obtain hypersonic boundary

layer stability data over a sharp-tip conical body in a quiet tunnel; and ii) to provide

experimental stability data in a low disturbance environment which is better suited for

comparison with stability code data.

A secondary objective of this investigation was to study the effects of nose

bluntness on the conical boundary layer stability in a quiet tunnel. The importance of

bluntness to hypersonic vehicle design is associated with the heating rate. Since the

heating rate is inversely proportional to the square root of the nose radius of hypersonic

vehicles, some degree of nose bluntness is essential on hypersonic vehicles.

A number of transition experiments [ 18-20] have been conducted to investigate

the effects of nose bluntness. The transition data acquired in these experiments showed

that the transition Reynolds number increases for "small" nose bluntness and decreases

for "large" nose bluntness. Since the nose-tip flow region is mixed (i.e. subsonic,

transonic, supersonic, and hypersonic) the influence of both first and second mode

disturbances is possible, but their competing roles cannot be determined from transition

data. Thus, for the blunt cases of this study, stability experiments are conducted similar

to the baseline sharp-tip conical configuration.

Stetson et al [21] conducted a systematic study of hypersonic boundary layer

stability on blunt nose cones. The blunt cone stability data of Stetson's study showed that

small nose-tip bluntness increases the critical Reynolds number, and that the

amplification rates of the disturbances were increased by the bluntness when compared

with sharp cone data [6]. That is, the sharp cone has a relatively low critical Reynolds

number followed by a region of moderate disturbance growth, while the small nose-tip



6

cone has a relatively high critical Reynolds number followed by a region of rapid

disturbance growth. A companion numerical study to Stetson's experimental work is

provided by the linear stability calculations of Malik et al [22]. These calculations

showed that bluntness stabilized the high frequency disturbances at low Reynolds

numbers, and broadened the bandwidth of unstable frequencies for high Reynolds

number. The qualitative agreement of the experimental and computational data is good,

in as much as the unstable frequency ranges are relatively well predicted, but the

quantitative agreements in the magnitude of the growth rates is poor. The influence of

the free stream disturbances may partly explain the poor quantitative agreement. In the

linear stability calculation method, there is no means to account for processes prior to the

linear growth stage. Thus, only experiments conducted in a quiet tunnel are suited for

comparison with linear stability theory.

Note that unlike the previous experimental stability studies [4-6,21] where a

straight cone model was tested, in the present study a straight cone with a curved-flare

afterbody was used to promote transition under quiet tunnel conditions. This model as

well as the quiet tunnel are discussed in the next section.
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2 Apparatus and Procedure

2.1 Experimental Apparatus

All tests were conducted in the NASA Langley Research Center's Nozzle Test

Chamber Facility. Two models were tested in this investigation: i) a straight cone model

and ii) a flared-cone model. For the flared-cone model, five interchangeable nose-tips

were designed and constructed: i) 4 hemi-spherical nose-tips and ii) a sharp nose-tip.

Also, for the purpose of the present research, a traverse system was designed and

constructed in order to conduct hot-wire boundary layer traverses using a novel, constant

voltage anemometry system. Each of these experimental apparatus components is

discussed below.

2.1.1 Nozzle Test Chamber (NTC) Facility

As shown in Figure 2, the NTC facility was of the open-jet type and heats air to

stagnation temperatures of 350-400 °F. At a freestream Mach number of 5.91, the

maximum nominal freestream unit Reynolds number is 10.3x106/fi. at a stagnation

pressure and temperature of 475 psia and 350 °F, respectively. The NTC was designed to

test the performance and flow quality of various nozzles which were eventually installed

in other wind tunnels. Thus, this facility was not suited for the detailed measurements

conducted in this investigation. For instance, no universal pitch and yaw system existed

to align the model to the correct test orientation. Therefore, model alignments were

conducted manually.

The present tests were conducted using a slow-expansion, axisymmetric, quiet

Mach 6 nozzle installed in the NTC facility. The nozzle, which is more fully described in

Reference 17., has a throat diameter of 1.00", exit diameter of 7.49", and length from
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throat to exit of 39.76". Practicalquiet core length Reynoldsnumbersof 6.0xl06 are

providedat afreestreamunitReynoldsnumberof 2.82x 106/ft. (Thequietcorelengthis

the streamwiselengthalongthe nozzlecentedinefrom the startof uniform flow on the

upstreamendto the initial soundmoderadiationon the downstreamend). The tunnel

was preheatedto approximately the test stagnationchambertemperatureto avoid

condensation.

Note thatthe NTC facility, with theMach6 quiet nozzle,canbeoperatedin two

modes:i) thebleedvalvesclosedmode;andii) thebleedvalvesopenmode. Thebleed

valvesclosedmodeoperatessimilar to conventionalwind tunnelsbut representsanoff-

designcase.However,thebleedvalvesopenmodeprovidessuction at the nozzle throat

and represents the quiet mode operation of the nozzle. Both bleed valve orientations

were used in this investigation, but the majority of the tests were conducted in the quiet

mode of operation.

2.1.2 Flared-Cone Model

The model, used in this study, was a 20" long, stainless-steel cone with a curved-

flare afterbody. The model geometry is shown in Figure 3 and the model coordinate

system is shown in Figure 4 where X is measured from the leading edge stagnation point.

For sake of brevity, this model is referred to as the flared-cone. The straight cone surface

extended from X=0" to X=10", with a cone half-angle of 5 °. The curved-flare surface

extended from X=I 0" to X=20" with a radius of curvature of 93.07". The sharp model tip

nominal radius was 0.0001", and the blunt-tip nose radii were 1/32", 1/16", 3/32", and

1/8". The model was instrumented with 29 pressure orifices and 51 thermocouple gages

placed along diametrically opposite rays as shown in the side view of Figure 4. The

model skin was 0.03" along the thermocouple and boundary-layer measurement rays, and

0.06" along the pressure measurement rays. This model is considered to be thin-skinned
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for the purpose of thermocouple measurements. Hot-wire boundary layer surveys were

conducted along a ray located 90 ° from the surface measurement rays as shown in the top

view of Figure 3.

The primary set of tests were conducted using the flared-cone model instead of a

straight cone in order to induce transition on the model under quiet tunnel conditions (i.e.

with bleed valves open and using a "quiet" freestream unit Reynolds number). The flare

generated an adverse pressure gradient resulting in a reduced boundary layer thickness

compared to the straight cone at the same freestream conditions. Thus, in comparison to

the straight cone, the effects of the flare are expected to be as follows [23]: (i) the

amplification rates for both first and second mode disturbances are increased; (ii) the

frequencies of the most amplified second mode disturbances increased; and (iii) the

frequencies of the most amplified first mode disturbances do not change significantly.

These effects should be considered when attempting to use the results presented in this

study to explain the previously observed discrepancies between sharp straight cone

experimental [6] and theoretical data [7] as well as blunt straight cone experimental [21]

and theoretical data [22].

The surface finish quality of the flared-cone model is shown in Figure 5 for 4 rays

spaced at 90 ° intervals. The hot-wire boundary layer measurements were conducted 30 °

clockwise from ray number 1 when viewing the cone base from the upstream direction.

The rms and the maximum deviation of the measured surface profile are shown; the

maximum deviation represents the maximum absolute displacement between the

measured and designed surface coordinates. The maximum rms occurs for ray 4 and is

about 0.1% of the base radius, or about 2.8% of the model boundary layer thickness. The

discontinuities at X=6", 9.5", and 11" were examined with a microscope and represent

measurement error in the machine used to measure the surface coordinates. Also, the
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discontinuitiesat X=20" are likely machine measurement error since a sharp edge surface

exists at this point along the model.

The installation of the model in the test facility is shown in Figure 6. Except for

the surface pressure and Appendix D measurements, the model boundary layer

measurement ray was aligned with a 0.2 ° + 0.05 ° windward yaw angle, and + 0.1 o pitch

angle. (Note that these angles are based on the geometric pitch and yaw angles and may

not represent the flow pitch and yaw angles). Also, 3.5" of the aft region of the model

extended downstream of the nozzle exit plane. However, from the leading edge of the

model to the most downstream portion of the boundary layer survey region, the model

remained entirely within the uniform mean flow region.

2.1.3 Straight-Cone Model

Prior to this investigation, a 25" long straight cone model with a 5 ° half-angle was

tested at the same freestream conditions as the flared-cone in the quiet mode of operation.

According to thermocouple measurements, no transition occurred for this model.

However, no determination of instability waves was found from these measurements. In

order to determine whether or not instability waves existed for the same straight cone

model, hot-wire boundary layer measurements were conducted in this investigation at the

same freestream conditions as the flared-cone model.

The coordinate system and boundary layer measurement ray for this model are the

same as the flared-cone model shown in Figure 4. Unlike the flared-cone, the boundary

layer measurement ray was aligned with a 0.1 ° + 0.050 windward yaw angle, and + 0.I °

pitch angle. Note that 3.94" of the aft region of the model extended downstream of the

nozzle exit plane. However, from the leading edge of the model to the most downstream

portion of the boundary layer survey region, the model remained entirely within the

uniform mean flow region.
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2.1.4 Traverse System

In order to conduct stability and transition boundary layer measurements, a

traverse system was designed and built. The traverse system consisted of four

components: i) two traverse units; ii) a traverse arm assembly; iii) a hot-wire probe tip

and hot-wire; and iv) the contact switch circuitry. Each of these items will be discussed

in detail below.

In order to conduct measurements along a particular ray of the cone, two traverse

units were used. An Aerotec ATS212 traverse unit was mounted perpendicular to an

Aerotec ATS224 traverse unit; these joined units were then fastened to the ceiling of the

NTC. The traverse units had an accuracy of +3.937×10 -4 in. and repeatability of

+7.874×10 -5 in., or 0.5% and 0.1% of the flared-cone boundary layer thickness,

respectively. This installation allows the hot-wire to traverse both parallel and

perpendicular to the cone axis of symmetry along a specified ray of the cone for either

the flared or straight cone models.

The traverse arm assembly, shown in figure 7, was designed for use with the

Aerotec traverses. This assembly allowed the hot-wire to traverse the model boundary

layer. The main arm could be moved in the vertical direction and rotated about the

cylindrical support to adjust the hot-wire to the correct vertical and angular orientations

for surveying a particular ray of either of the cone models. The mounting plate is used to

mount the entire traverse arm assembly to the Aerotec traverse units. The hot-wire probe

tip is detachable, allowing a new hot-wire to be easily replaced.

The hot-wire probe tip is shown in Figure 8. The hot-wire probes were

constructed of 10% platinum-plated-tungsten wire of 100 gin. diameter. The wire was

soldered onto 0.005" stainless steel broaches which were attached to the main hot-wire

probe body. The nominal length-to-diameter (L/D) ratio of the wire varied from 150 to

210. L/Ds of 150 were used for the flared-cone blunt test cases and the straight cone test
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cases, and L/Ds of 210 were used for the flared-cone sharp test cases. The wire was slack

to minimize the "strain-gage effect" as shown in Figure 9. As shown in Figures 8 and 9,

a contact broach was located approximately 0.005" to 0.007", depending upon the test

case, below the wire broaches. The purpose of this contact broach was to determine the

location of the model surface as described in the next paragraph.

The central component that allows the hot-wire to traverse close to the model

surface is the contact switch circuit system shown in Figure 10. The circuit itself models

the principles of the 555 Timer Circuit. The operation of the contact switch circuit

system was controlled by computer. The computer was connected to a Unidex 11

traverse motion controller. As shown in Figure 10, the controller is connected to both the

contact switch circuit and contact broach through the hot-wire probe tip. When the hot-

wire is traversed towards the model surface, the contact broach will eventually reach the

model surface (refer to figure 8). When the contact broach contacts the model surface,

the circuit is closed and a high voltage is sent from the circuit to the traverse motion

controller. This process enables the computer to stop the traverses before the hot-wire

reaches the surface. In this manner, the model surface can be located at each streamwise

location which is surveyed.

2.1.5 Hot-Wire Anemometer

Three types of anemometers are in existence today: i) the constant temperature

anemometer (CTA) [24]; ii) the constant current anemometer (CCA) [24]; and iii) the

constant voltage anemometer (CVA) which is a new, proprietary system. The CVA

system was used in the present research. The particular CVA system used in this

investigation had a 350 kHz bandwidth with a 40 dB/decade roll-off.

The principles of constant voltage anemometry are described in detail in

Reference [25]. Reference 25 states that the CVA has three main advantages over the
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CCA andCTA: i) theCVA hashighersensitivityandhighersignal-to-noise(S/N) ratio

(at least 20 dB) than the CCA and CTA under the same overheat conditions; ii) the radio

frequency interference of the CVA is small relative to both the CCA and CTA; and iii)

long cables and changes in cable lengths had negligible effect on the CVA operation

whereas they had a significant adverse effect on the stability of the CCA and CTA

systems.

The basic CVA uncompensated- and compensated- circuits are shown in Figure

11. The main component of both circuits is an operational amplifier. The measurable

bandwidth of the uncompensated-circuit is approximately the reciprocal of the wire time

constant which is on the order of 1 kHz. However, the compensated-circuit provides

bandwidths on the order of 200 kHz. This bandwidth is not sufficient for high speed

flows and thus a composite amplifier stage is added to the compensated-circuit. The

composite-amplifier-compensated circuit yields bandwidths on the order of 600 kHz.

The CVA circuit used in this research was similar to the composite-amplifier-

compensated circuit. However, a disadvantage of the CVA system used in this

investigation is that quantitative measurements are difficult due to the fixed time-

compensation of this system.

In general, for a CVA system, the wire time constant is a function of the mean

flow, wire properties (specific heat, mass, etc.) and geometry, and the voltage across the

wire. Reference 25 states that for "high" wire Reynolds numbers, the wire time constant

as a function of wire Reynolds number converges to a narrow band irrespective of the

L/D ratio of the wire. This statement implies that time constant changes are small at high

Reynolds numbers. Furthermore, Reference 25 states that high speed wind tunnel results

show that the wire Reynolds number is within this "high" Reynolds number range so that

fixed time compensation can be used for high-speed wind tunnel tests.
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However, at least two problems may exist with the fixed time constant approach

for high-speed flows when quantitative fluctuation measurements are sought. (No

problems exist for the mean mass flux and total temperatures which can be correctly

measured with the fixed time constant CVA). First, experimental data from reference 26

shows that the wire time constant changes by a factor of 2.5 in a typical hypersonic

boundary layer. Second, assuming the wire time constant changes only a "small

amount", the sensitivity of the CVA output voltage to small changes in the time constant

is unknown. If the voltage output sensitivity to "small" changes in the time constant is

"small", then fluctuation measurements would be reasonably accurate, otherwise large

elrors may occur.

Another problem with the CVA system used in this investigation is the wire time

constant setting and subsequent compensation provided by the developers of the CVA.

Using wires of similar material, length, and diameter as those tested in this investigation,

the CVA time constant was found by placing the wire in incompressible flow and tuning

the CVA for a "fiat" frequency response. However, the time constant in hypersonic flow

differs from incompressible flow based on heat transfer considerations. Further, a first

order compensation was assumed to compensate for the wire roll-off. More

appropriately, the wire should have been placed in the hypersonic flow and the CVA

tuned for proper compensation. This approach would have provided a more appropriate

fixed time constant setting.

Since one wire was used for a given test case, the approach taken by the CVA

developers does not present a problem for qualitative fluctuation measurements.

However, errors may occur for strictly quantitative fluctuation measurements. Although,

quantitative rms fluctuation measurements should be more accurate than strict

quantitative fluctuation measurements.
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Based on Navier-Stokes calculations, over the streamwise range that was

traversed at the maximum energy locations, the mass flux and total temperatures changed

about 34% and 4%, respectively. Thus, the time constant changes due to mass flux

changes may present a problem for quantitative fluctuation measurements, and more

conventional anemometry techniques maybe warranted. However, CCA could not be

practically used for the present tests since the CCA would have to be tuned at each

location traversed in the boundary layer making the traverse surveys too long. On the

other hand, the automatic compensation provided by the CTA makes this system ideally

suited for hypersonic boundary layer measurements in conventional tunnels. However,

both the CTA and CCA were initially tested in the freestream of the quiet tunnel, but the

S/N ratio of both systems was approximately 1. Since the only anemometer which

provided a S/N > 1 was the fixed time compensation CVA, this system was the only

system feasible for the present experiments.

In this study, uncalibrated amplification rates are used as the primary analysis

tool. According to Kimmel and Kendall [8], since logarithmic growth or decay of the

output voltage fluctuations are expected in the linear stability region, the wire sensitivity

to the individual components is not needed for determination of the amplification rates.

This uncalibrated approach has been verified from controlled stability experiments [27].

Further, the amplification rates computed in linear stability theory are the same for any

flow variable. This suggests that the experimentally derived uncalibrated amplification

rates will compare well with numerical amplification rates in the linear stability regime

for an automatic compensation anemometer such as the CTA. However, for the fixed-

time constant CVA, an additional condition is needed for comparing the uncalibrated

amplification rates with numerical amplification rates. This condition is that the wire-

sensitivity changes due to changes in the mean flow should be small relative to the

exponential growth. For the present experiments, this condition is met as shown in
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Section 3.7.1. Therefore, the uncalibrated experimental amplification rates should

compare well with the numerical amplification rates in the linear stability regime.

2.2 Experimental Test Matrix

All tests were conducted at a freestream stagnation temperature and pressure of

810 + 2 °R and 130 + 0.2 psia, respectively. The measured freestream Mach number was

5.91. These conditions yield a freestream unit Reynolds number of 2.82x106/ft. At this

Reynolds number, quiet flow exists over a majority of both model surfaces when the

bleed valves are open.

Measurements were conducted in both the freestream and over the two cone

model configurations. The freestream measurements consisted of both pitot-pressure and

hot-wire measurements. These measurements will be discussed below in the

Experimental Data Acquisition section. The cone model measurements consisted of both

surface and hot-wire boundary layer measurements over the straight cone and flared-cone

configurations. These measurements are summarized in Table 1 which is presented in

Section 8. As indicated previously, a rn=3/32" nose-tip was also constructed for the

present tests. However, during the testing phase of the experiment, preliminary results

from the other nose-tip cases indicated that the rn=3/32" tip would yield no new

information. Therefore, this particular nose-tip was not tested. In addition to the

measurements listed in the Table 1, calibration measurements were also conducted for all

test configurations.

2.3 Experimental Data Acquisition

2.3.1 Freestream Measurements

Freestream measurements were conducted to quantify the mean and unsteady flow

field of the freestream flow. These measurements consisted of pitot pressure (Mach
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number)measurements,and hot-wire measurementsconsistingof both rms and wave

trace,or spectra,measurements.All freestreammeasurementspresentedin this work

wereconductedwith thebleedvalvesopen. Only theessentialelementsof thefreestream

measurementsarediscussedbelow, but further detailsof the freestreamflow field is

found in reference[28]. The coordinatesystemfor the freestreammeasurementsis

shownin Figure 12. Thepitot probeandhot-wireprobeorientationsarealsoindicatedin

thefigure asthe"probe".

The freestreampitot pressuremeasurementswereconductedin orderto quantify

the uniformity andaxisymmetryof thequiet nozzlevia of the freestreamMachnumber.

Pitot pressureswere measuredby a Druck transducerwith 10psiamaximumpressure

and_+0.006psiaerror,andstagnationchamberpressureswere measuredusinga Druck

transducerwith a300psiamaximumpressureand+ 0.18 psia error. The pressure signals

were scanned by a Hewlett Packard Data Acquisition and Control Unit (HP-DACU) and

recorded by computer. Both transducers were calibrated using a vacuum pump and had

linear characteristics over the calibration range tested.

The stagnation pressure ratio across the normal shock in front of the pitot tube is a

function of only the Math number in front of the shock for a given perfect gas. That is,

for air, Ppitot/Po**=fnc(M**)=stagnation pressure ratio function. Assuming the freestream

flow is isentropic, the stagnation pressure in front of the pitot tube normal shock is the

same as the stagnation chamber pressure. Thus, the stagnation pressure ratio function

was iterated to obtain M** using the measured values of Ppitot and Po**. These freestream

Mach number values were used to quantify the mean character of the freestream flow.

The uniformity and axisymmetry of the freestream flow was ascertained by

conducting pitot measurements in the centedine plane of the nozzle (Zn=0), and in planes

located at Zn=l.5 and Zn=l.5". Each plane was divided into 4 separate rectangular



18

blocks(a block designates one wind tunnel run) as shown in Table 2. Note that adjacent

blocks were overlapped in order to evaluate the repeatability of the data from run to run.

In order to conduct the pitot surveys, the pitot-tube was mounted to two Aerotec

traverses which were controlled by a Unidex 11 Motion Controller. A computer

controlled the traverse movement, conducted the pitot pressure and stagnation chamber

pressure measurements, and monitored the freestream conditions of the tunnel throughout

the pitot-survey. The hot-wire measurements were controlled by the same traversing

equipment, and these measurements are discussed next.

The hot-wire rms measurements were conducted to quantify the laminar to

transitional nature of the nozzle wall boundary layer. These measurements were

conducted using the CVA and 0.0001" diameter platinum-plated tungsten wires on the

order of 100 wire diameters long. Data acquisition was obtained using a LeCroy 9424 8-

Bit Digital Oscilloscope (LeCroy) as the analog-to-digital (A/D) converter. These

measurements were conducted in the centerline plane of the nozzle and were sub-divided

into 3 separate rectangular blocks (runs) as shown in Table 3.

The last set of freestream measurements were the hot-wire wave trace

measurements conducted to quantify the spectral content of the freestream. The same

wire L/Ds and data acquisition equipment used for the rrns measurements were also used

for these measurements. A/D conversion was obtained by the LeCroy using a sampling

rate of 400 kHz. In order to avoid aliasing, the measurements were high- and low- pass

analog-filtered (i.e. prior to A/D conversion) at 100 Hz and 125 kHz, respectively, using

an Ithaco 4302 Filter (Ithaco). These measurements were conducted in the centerline

plane of the nozzle and were sub-divided into 3 separate rectangular blocks (runs) as

shown in Table 4.

Calibration measurements were also conducted for the hot-wires used for the

freestream measurements. However, due to the relatively low S/N ratio of the freestream
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noise,calibratedfreestreamrms fluctuations were not possible. Thus, the calibration

measurementsfor thehot-wires used for the boundary layer measurements over the cone-

models will be discussed next.

2.3.2 Calibration Measurements

Static calibration of the CVA was conducted for the primary purpose of obtaining

mean mass flux and mean total temperature profiles through the boundary layer at various

streamwise locations. A secondary objective of the static calibration was to obtain

approximate rms mass flux and total temperature profiles to quantify the nature of the

boundary layer disturbances.

Hot-wire calibration data consisted of the following matrix of data: i) freestream

stagnation temperature values; ii) freestream mass flux values; and iii) mean CVA output

voltage values. This information was obtained for each hot-wire over a range of wire

voltages. The calibration was conducted by varying the stagnation chamber pressure in

increments of 10 psia from 100 to 190 psia at nominal stagnation temperatures of 790,

810, and 830°R. An additional pressure of 200 psia was also used for the 830 °R case,

providing a total of 31 total temperature and pressure pairs, or 31 total temperature and

mass flux pairs. The stagnation conditions were measured using the HP-DACU. The

Mach number was also measured using a pitot tube following the same method

previously outlined for the pitot freestream measurements. From the stagnation values

and the Mach number, the mass flux was computed. At each stagnation condition, the

CVA wire voltage was varied over 13-15 levels; the level magnitude was optimized for

the individual wires used. A Keithley 199 Digital Multimeter (Keithley) was used to

measure the mean output voltage of the CVA at a particular wire voltage, and stagnation

chamber pressure and temperature. An HP3400A true RMS Voltmeter (RMS-meter)

monitored the rms of the freestream flow field throughout the calibration process.
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The completed calibration matrix included a CVA output voltage corresponding

to each freestream stagnation temperature and mass flux pair at each operating point of

the CVA. The calibration data along with measured output voltages in the cone boundary

layer yields mass flux and total temperatures in the boundary layer. The procedure used

to obtain calibrated boundary layer quantities will be discussed below in the

Experimental Data Reduction and Analysis Section.

2.3.3 Surface Static Pressure Measurements

Surface static pressure measurements could be used to quantify the pressure

distribution for each nose-tip configuration, and to align the model at zero pitch and yaw

angles with respect to the flow field. Thus, the original test matrix included the pressure

measurements to be conducted prior to the boundary layer hot-wire measurements.

However, pressure measurements were conducted after the boundary layer measurements

and for only the flared-cone/sharp-tip case due to problems in bringing the novel pressure

system on-line.

For the pressure measurements, the sharp-tip flared-cone boundary layer

measurement ray was aligned at approximately a 0.1 ° + 0.05 ° lee yaw angle and a + 0.1 °

pitch angle. These measurements were conducted using MKS 690 Absolute Pressure

Transducers and MKS 670A High Accuracy Signal Conditioners. The maximum

pressure of the transducers was 3.94 in. Hg., and the error of the pressure system was :t:

0.0012 in. Hg. All measurements were made through 0.04" diameter pressure taps

connected to the transducers by 5' long stainless steel tubing. The measurement locations

were at X=5, 9.5, 13, 14, 15, 16, 17, 18, and 19 inches.

2.3.,1 Stability and Transition Measurements

The stability and transition measurements consisted of three types of

measurements: i) schlieren measurements, ii) surface static temperature measurements,
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andiii) boundarylayer measurements.The boundarylayermeasurementsconsistedof

hot-wire traversesthat includedrms, mean,and spectrameasurements.Eachof these

measurementsis discussedbelow.

Schlieren measurementswere conductedto establish whether the flow was

laminar, transitional, or turbulent. Also, the existenceor nonexistenceof the second

modewasverified from thesemeasurements.Theschlierendatawererecordedusingan

on-line video camera. These video records were freeze-framedand digitized by

computer.Notethattheschlierenfield of view includedonly theaft 3.5"of themodel.

The surfacestatic (mean)temperaturemeasurementswere conductedto verify

that the model was in thermalequilibrium, andto providean estimateof the onsetof

disturbancegrowth. Thetemperatureswere measuredusing51 K-type thermocouples

locatedfrom 2" to 9" in incrementsof 1", andfrom 9" to 19.75"in incrementsof 0.25".

Thethermocoupleswerescannedby the HP-DACU andrecordedby computer.Model

thermal equilibrium was verified by conducting 40 minute wind tunnel runs (after

preheat)while monitoring the thermocoupletemperatureswith time. This process

establishedthe equilibrium temperaturesof the thermocouplesfor eachstreamwise

location. Knowing the equilibrium temperaturesallowed the tunnel preheat to be

optimized in order to bring the model to equilibrium as quickly as possibleprior to

conductingtheboundarylayertraversemeasurements.Themodelwas "thin-skinned"to

reduceconductionalongthemodelsurfacesothatthethermocouplemeasurementswould

respond"relativelyquickly" to thetransitionalnatureof theboundarylayer.

For theflared-cone,hot-wireboundarylayer rmssurveyswereconductedat 0.5"

streamwiseincrementsat the following locations:X= 10.97"-18.97",X= 10.65"-18.65",

X=10.32"-18.32",X--9.66-17.66"for thesharp-tip,1/32"nose-radius,1/16"nose-radius,

and 1/8"nose-radiustestcases,respectively.(NotethatX is measuredwith respectto the

leadingedgestagnationpoint andthusX=12" for thesharp-tipcasedoesnotcorrespond
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to the samestreamwiselocationas X=12" for a blunt-tip case,etc.). The R-locations

correspondingto eachX-rangeare listed in Tables5-8. Surveyswerealso conducted

from X=16.97"-23.47"for thestraightconemodel. At eachstreamwiselocation,thewire

wastraversedperpendicularto theconeaxisof symmetry.

The meanandrms of the CVA output voltagewere bothmeasuredat 13points

clusteredneartheboundarylayeredgeat 6-7CVA wire voltagesThermssignalwaslow

passfiltered at lkHz andhigh-passfiltered at 1MHzusinga StanfordResearchSystems

SR560 Preamplifier (Stanford). As described in the next section, the mean voltages were

reduced to obtain the boundary layer thickness, and the rms profiles were reduced to

obtain the rms mass flux and total temperature profiles. In addition, the rms profiles were

inspected to determine the maximum rms, or the maximum energy point, at each

streamwise location for the purpose of conducting wave trace measurements at such

locations.

Wave traces were measured at the maximum energy point at the same streamwise

locations as the rms boundary layer surveys; three wire voltages were used at each

measurement location. The maximum energy point was used for two primary reasons: i)

this location corresponds approximately to the location of maximum second mode

amplitudes; and ii) the S/N ratio is a maximum here. The wave traces were used to

obtain spectra and growth rates as described in the next section. Note that the LeCroy

was used for A/D conversion of the wave traces. The sampling rates were 1 MHz and 2

MHz for the straight cone and flare-cone, respectively. Also, in order to avoid aliasing,

the wave trace signals were low-pass analog-filtered at 400 kHz and 640 kHz for the

straight cone and flared-cone, respectively. The high-pass setting was 1 kHz for both

cones. The Ithaco was used for f'dtering.

A description of the data acquisition and control process, used to obtain the

boundary layer measurements that were outlined in the above two paragraphs, will now
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be discussed. The global dataacquisitionand control systemfor the boundarylayer

measurementsis shown schematicallyin Figure 13. In Figure 13, the CVA, power

supplyto theCVA, andunsteadyandmeanCVA outputequipmentareshownaddedto

the traversingcomponentsof Figure 10. The CVA was discussedpreviously,but the

otherdeviceslistedwill nowbebriefly discussed.

Thepower supply was used to change the input voltages to the CVA. This varies

the wire operating voltages of the CVA. The DC-CVA output was averaged to obtain the

mean CVA output for both the rms and wave trace boundary layer surveys. The unsteady

CVA output was measured differently depending on whether the rms surveys or wave

trace surveys were being conducted. For the rms measurements, the DC-CVA output

signal was AC-coupled by the Stanford filter, and then input into the RMS-meter. For the

wave trace measurements, the DC-CVA output was AC-coupled by the Ithaco filter, and

then input into the LeCroy. Both unsteady and mean output voltage measurements were

conducted over a range of 6-7 wire voltages at each survey point in the boundary layer.

Further details of the rms boundary layer survey equipment are shown in Figure

14; the accompanying program that was written for this system is listed in Appendix A.

In addition to the measurements mentioned in the above paragraph, the chamber

stagnation pressure and temperature as well as three select thermocouples were monitored

at each streamwise location that was traversed. The monitored thermocouples were used

to verify approximate model thermal equilibrium during the boundary layer surveys.

Two options were initially used to conduct the rms surveys. The first option utilized the

RMS-meter to measure the rms output voltage; also, the time traces were viewed on-line

using the LeCroy. The second option utilized the LeCroy to measure the rms. The

dynamic range of the LeCroy was not large enough to conduct the full boundary layer

surveys and the measurements took too long with the LeCroy. Thus, the RMS-meter was

used for all of the measurements presented in this work. The mean CVA output was
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measuredusingtheKeithley asshownin Figure 14;theKeithleywasalsoused to record

the RMS output signal from the RMS-meter.

The wave trace measurement surveys consisted of the same components shown in

Figure 14, except no direct rms measurements were conducted. Instead, the wave trace

measurements were conducted using the LeCroy. A separate computer program was

written to conduct these surveys.

The calibration measurements, freestream measurements, and thermocouple

measurements were all conducted using the same data acquisition and control equipment

used in Figure 14 plus the lthaco filter (not shown). Similar programs were written for

each of these measurements. The same methodology and approach for data acquisition

and control outlined above for the rms boundary layer surveys was also followed for

these measurements.

2.4 Experimental Data Reduction and Analysis

2.4.1 Boundary Layer Thickness Calculations

The mean voltages measured during the rms surveys were used to obtain an

estimate of the boundary layer thickness. As will be shown in Section 3.7.1, at "low"

CVA wire voltages the anemometer responds mostly to total temperature fluctuations,

and at "high" CVA wire voltages the anemometer responds mostly to mass flux

fluctuations. For hypersonic conical flow, neither the derivative of mass flux with

respect to the normal distance from the wall, nor the derivative of mass flux with respect

to Y approach zero as the boundary layer edge is approached. However, these derivatives

do approach zero for the total temperature as the boundary layer edge is approached.

Thus, the "low" CVA wire voltages, which are mainly sensitive to total temperature, were

used to determine the boundary layer thickness. Using the low CVA wire voltages
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correspondsto estimatingthe thermal boundary layer thickness as opposed to the velocity

boundary layer thickness. That is, the total temperature relation:

1 U 2

To= T+ 2 cp

implies that OTo _ OT + U OU

_Y OY cp _Y

0U _T OTo

but, _- =_ 0 before _-_ =_ 0 [29] and thus using the condition _ =_ 0 (i.e. using the

low CVA voltages) defines the thermal boundary layer thickness.

Therefore, the (thermal) boundary layer thickness was estimated using the

following approach: i) the voltage profiles at the lowest wire voltage were fit using a

cubic smoothing spline routine; and ii) since _gTo / 0Y _ 0 at the boundary layer edge,

the point in the boundary layer where the voltage was 0.995 times the voltage furthest

from the wall was chosen as the boundary layer thickness. This process was

implemented for each streamwise location. The boundary layer thicknesses calculated in

this manner were perpendicular to the cone axis of symmetry. So, a coordinate transform

was then used to transform these values to values normal to the local cone surface. The

corresponding X-location was also transformed. This procedure yielded the thermal

boundary layer thickness distribution - 6 as a function of streamwise distance, X. The

thermal 6 is approximately 10-15% [29] larger than the velocity 6. "[he latter was

determined from the CFD.

Note that the a similar procedure for the mass flux profiles (i.e. for the high wire

voltage data) would be implemented using the condition OU/OY _ const, in place of

step (ii.) above. In addition, the measurement point furthest from the wall at each

streamwise locations would have to be behind the conical shock since the mass flux

changes discontinuously across the conical shock. That is, a different constant for

OU //)Y, at the boundary layer edge, would occur in front of the shock and the wrong

boundary layer thickness would be calculated. Thus, if the measurement points furthest
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from the wall were in front of the shock, then using the "low" wire voltages may present

slight errors since the mass flux contributes "slightly" to the voltage output at "low" wire

voltages. However, all boundary layer measurements were conducted only behind the

shock in this investigation and thus such errors should not occur.

2.4.2 Power Spectral Density Calculations

The time traces conducted for the freestream and boundary layer wave trace

surveys were used to compute the power spectral density (psd). The psd was computed

using Welch's method [30]. For both sets of surveys, two time records consisting of

40,000 points/record were recorded for each measurement point surveyed.

Due to the low freestream disturbance levels, the freestream psd was computed

with twice as many averages as for the boundary layer data. For the freestream

measurements, the psd was computed using a Harming window, record length of 256

points, and 156 averages for each 40,000 point record. The psd of each 40,000 point

record was then averaged. The free stream psd dam are used for qualitative purposes only

so no test for stationarity was conducted for these measurements.

However, the boundary layer wave trace data were tested for stationarity since

these data were used to compute the amplification rates. For the boundary layer

measurements, the psd was computed using a Harming window, record length of 512

points, Fourier transform length of 1024 points, and 78 averages for each 40,000 point

record. The psds of the two 40,000 point record were then averaged. To test for

stationarity, each 40,000 point time record was divided into record lengths varying from

128-24,576 points. The mean of each time record was computed. This process gave 312

mean values for the 128 length record set, 156 mean values for the 256 length record set,

etc. The standard deviation of the mean values relative to the mean of the entire 40,000

point trace was then computed for the 128 record length set, 256 record length set, etc.
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This standard deviation should approach zero for the AC-coupled time traces. However,

due to the filter noise, CVA noise, and surrounding environmental noise picked up by the

filter and/or the CVA, the standard deviation approached an asymptotic finite value as the

record length was increased. Record lengths of 512 points gave standard deviations on

the order of 6e -4 which was within 2% of the asymptote. Thus, each 40,000 point record

length was verified to be stationary in the mean using 512 point record lengths.

Psd computations were computed for each streamwise location. Thus, the final

psd solution matrix consisted of the psd amplitudes as a function of frequency at each X-

location (streamwise distance), or more appropriately, S-location (surface distance). This

data was used to compute the spatial amplification rate as described below.

2.4.3 Amplification Rate Calculations

From the psd data, the non-dimensional, spatial amplification rate was computed.

The non-dimensional amplification rate was computed using the following approach: i)

the non-dimensional amplification rate function=fnc(psd amplitudes, stability Reynolds

number) was derived from the dimensional amplification rate function=fnc(psd

amplitudes, S); ii) the amplitude data as a function of stability Reynolds numbers was

curve fit using a cubic smoothing spline at each frequency; and iii) the non-dimensional

amplification rates were computed. Each of these steps is discussed below. (In the

following equations 2. I-2.6, the asterisks denote dimensional quantities, but in other

sections of this work the asterisks are removed for simplicity)

By definition, the spatial amplification rate, -¢x i , Is:

• 1 _A

-¢xi = A _S* (2.1)

where A is the square root of the psd amplitude, and S* is the surface length along the

cone from the leading edge stagnation point.
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Define the stability Reynolds number, R, based on a reference length scale, 2*, as

follows:

R = (2.2)
_, Vref

where U_f is the reference velocity, v_e f is the reference kinematic viscosity, and _* is

defined as follows:

, , xl/2

VrefS )2*=
t tJ,<,) (2.3)

given by:

The non-dimensional amplification rate, -IX i, Was derived by using freestream values as

reference quantities, non-dimensionalizing the amplification rate by the reference length

aA
scale, and combining equations 2.1, 2.2, 2.4 (to obtain _-), and 2.5. The final result is

1 OA
-cq = m__ (2.6)

2A OR

where R is given by equation 2.4 and was computed for each S-location using a

freestream Reynolds number, Re.fit, of 2.82x 106/ft.

c3A OA OR

_-= 0R OS* (2.5)

where S* is in feet.

By inspection of equation 2.4, R=f(S*) if the reference quantities are appropriately chosen

as constants. Thus, the amplitude derivative with respect to S* is given by the following

equation:

(2.4)R=i ,refI :=_ R 2=Re s.= *S*
_, Vref )

Substituting equation 2.3 into 2.2, to eliminate £*, yields an alternate form for R as

follows:
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For eachfrequency,theamplitude,A, wascurvefit with respectto S. Since

thefunctionaldependenceof A with respectto R differedgreatlyfor individual frequency

bands,a fairly generalcurve fit waschosenfor thepurposeof fitting the A vs. R data

(amplitude profile). The curve fit was a cubic smoothing spline that contained a

parameter to control the amount of data smoothing. At one extreme, the smoothing

parameter could be specified so that maximal smoothing, i.e. a least-squares straight-line

fit, was applied to the data. On the other extreme, the smoothing parameter could be

specified so that no smoothing was applied to the data; this parameter setting resulted in

the standard cubic spline interpolant with the so-called 'natural' end conditions. For the

present data, the smoothing parameter was chosen so that the cubic smoothing spline

interpolant contained as much of the essential characteristics of the amplitude profile as

possible but as little of the supposed noise. Thus, the fitted function was smooth with

OA for eachminimal noise. The fitted function was then used to compute the derivative, _-,

frequency.

Step 3: The final step was to compute -oq using equation 2.6 and the -_--values

which were computed in step 2 for each frequency. In this manner, comparisons of -o. i as

a function of R at select f, and comparisons of-tt i as a function of f at select R were

made. Selected frequency bands pertaining to the first and second modes were also

examined to determine the maximum first and second mode growth rates as a function of

R. The second mode maximum -oq at each R-location corresponded to the maximum -_

for all frequencies in the second mode frequency-band, etc. for first mode and possible

(sub)-harmonics.

2.4.4 Mean and RMS Mass Flux and Total Temperature Calculations

As mentioned in Section 2.3.2, the calibration data for a given hot-wire included

the CVA output voltage corresponding to each freestream stagnation temperature and



30

massflux pair at each CVA (mean) wire voltage, Vw. In order to use this calibration data

to calculate the mean total temperature and mass flux profiles the following procedure

was followed: i) using the calibration data, a functional relationship that relates the mean

CVA output to the total temperature and mass flux at each Vwwas formulated and solved

to obtain calibration constants; ii) the rms-surveys were conducted to obtain CVA mean

output voltages at 6-7 V w'S at each point in the boundary layer for each streamwise

location; iii) using the calibration constants calculated in step 1 and the data obtained in

step 2, a mean mass flux, pU, and mean total temperature, To, matrix equation, and an

U'rms mass flux, (p)rms' and rms total temperature, T'o,rms, matrix equation were both

formulated; and iv) these 2 matrix equations were solved to obtain pU, To, (oU)' ms, and

T'o,rm s at each point surveyed. Each step of this procedure is outlined in detail below.

(This procedure is for a given hot-wire).

_£J2.L: Using the hot-wire calibration data, a power law fit was assumed to relate the

CVA mean output voltage to the corresponding freestream To and flU at each Vw. The

power law fit has the form:

(V'_s)2 = B(p'-U) n + DTo + E (3.1)

where n is a specified parameter between 0.1-1, B, D, and E are constants for a given Vw,

and V"_ is the mean CVA output. Applying equation 3.1 over a range of freestream _oo

and pU at afixed Vw results in the following matrix system:

[To],

[To]2

[T°]m

1

1

(3.2)

where m=31 since 31 freestream mass flux and total temperature pairs were obtained

during the calibration phase of the experiments as previously discussed in Section 2.3.2.
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After specifying n, the matrix systemgiven by equation3.2 was solved usinga least

squaresmatrix solverto obtainB, D, andE for a given fixed Vw. This procedurewas

repeatedfor eachVw suchthata setof B, D, andE calibrationconstantsareobtainedfor

the Vw range. 15 Vw valueswere usedfor the flared-conesharp-tipcaseand 13Vw

valueswereusedfor all othertestcases.

In order to maximizethe accuracyof the calibration data fit, equation3.1 was

appliedover a rangeof Vw's at a fixed p'-Uand To, resulting in the following matrix

system:

[11D],  ,211E
where k=13 or 15 and a particular row of this matrix is simply equation 3.1 at a constant

Vw. (Each row represents a different Vw-value). Using the measured pU-values

obtained as part of the calibration data and the computed B, D, and E calibration

constants, equation 3.3 was solved to obtain pU and To. These solutions correspond to

the predicted pU and To. (This process mimics solving for pU and To in the boundary

layer given only V s and will be described below). The correlation between the measured

pU and To and the predicted pU and To was then calculated. This correlation indicates

the accuracy of the assumed fit as discussed below.

For the hot-wire used for the flared-cone sharp-tip measurements, the predicted

pU and To values and the predicted-vs-measured correlations were calculated over a

range of n-values from 0.1-1. An n of 0.3 gave the correlations closest to 1: a 0.9989

correlation between the predicted-vs-measured To and a 0.9969 correlation between the

predicted-vs-measured pU. Thus, this value was used for further data reduction. Note
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that the accuracy in terms of the correlation did not change much from n=0.3-0.8. Over

this range the mass flux and total temperature correlations were within 0.01% of the best

correlation at n=0.3. Values of n in the range 0.5-0.6 work best within the calibration

range of the data which compares well with Math 3 CTA results [31 ] obtained at constant

overheat and stagnation temperature conditions. But, n=0.3 provides the best fit for the

entire data set since some of the data is outside of the calibration range. (The predicted-

vs-measured correlations were also calculated for other wires tested in this investigation

and similar correlations and best-fit n-values were also determined).

_¢JZ.2: This step was completed by conducting the rms surveys previously outlined in

Section 2.3.4. Note that during the calibration phase of the experiments, 13-15 Vw-values

were used but 6-7 Vw-values were used at each location in the boundary layer for the rms

surveys. The greater number of values used for the calibration data provided more

accurate matrix solutions and these 13-15 Vw.values included the same 6-7 Vw values

used for the rms surveys.

Steps 3 & 4: For the mean total temperature and mean mass flux boundary layer

quantities, equation 3.3 was also used. In this case, k=6 or 7, and the 6 or 7 V s-values

now represent the mean voltage of the CVA obtained during the rms surveys. Equation

3.3 was solved using a least squares matrix solver to obtain pU and To at each point in

the boundary layer.

i

However, (flU)m s and To,tin s cannot be obtained as directly as the mean

values. First, the sensitivities of the CVA output voltage to the mass flux and total

temperature were found. From equation 3.1, the following sensitivities were derived:

_V-'_sI_P'-U To = l ,-"_,,1 Bn(p-u)n-IDTo (3.4)
°+ +E

and
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_{ _ _D (3.5)

where ( )1(To) and ( )1(_-U) denote the partial derivatives of the term in parenthesis with

respect to total temperature and mass flux, respectively, and the equations are valid at

constant Vw.

The sensitivities are for a fixed Vw and represent points upon the surface fit curve

given by equation 3.1 at a constant Vw. The CVA output voltage fluctuation, V's, is a

function of the mass flux and total temperature fluctuations at a fixed Vw and thus to first

order accuracy:

v__< 1_o_0_+_o<1_/_o/
Substituting equations 3.4 and 3.5 into equation 3.6:

Squaring 3.7 and taking the time average yields the governing rms equation:

;+
which is restricted to a constant Vw.

yields the following matrix equation:

(3.6)

(3.7)

(3.8)

Applying equation 3.8 over the range of Vw-values

See Adjacent Page
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4(_)_
1

4(_s)2 2

I n2B2(_-=_)2n-2[(pU )'4(_-_'s)2 ]21k

I nBD(_'U) n-12(_)_

I nBD(p-U)n-I 1 I D2.4(._s)2'}L J, .k

[(pu)']'
(PU)'(To)

(3.9)

where k= 6 or 7. This matrix system was solved using a least squares matrix solver to

obtain [(pU)' ]2, (pU)' (T o), and (T' o)2.

By applying equation 3.3 and 3.9, as described above at each boundary layer

point, the mean mass flux and total temperature profiles as well as the rms mass flux and

rms total temperature profiles were calculated. Note that due to the considerations

discussed in Section 2.1.5, the rms profiles are only approximate.

2.5 Theoretical Data Analysis

In order to compare the experimental mean mass flux and total temperature

profiles with theoretical predictions, solutions using an implicit multi-grid 2D Navier-

Stokes code [32] were obtained. A low diffusion flux splitting approach is employed to

yield accurate solutions. An implicit Gauss-Seidel algorithm is used to advance the

solution to steady state. Solutions were obtained for both the flared-cone sharp-tip case

and the rn=l/32" nose-tip case.
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Typical CPU times to solution convergenceon a Cray Y-MP were about 35

secondsasshownin AppendixB. A grid refinementstudywasalsoconductedfor the

sharp-tipcaseasshownin AppendixB. Reference32 showsexcellentcomparisonwith

two otherstate-of-the-artCFD (computationalfluid dynamics)codesfor the sharp-tip

flared-coneconfiguration. A 241x145grid wasusedin Reference30which is thesame

grid sizethatwasusedfor thepresentcalculationsfor bothtestcases.Approximately57

grid pointswereclusteredin theboundarylayer.

TheNASA Langleydevelopedcode,CFL3D [33],wasusedto examinetheeffect

of flow asymmetryin thepresentwork. In thesecomputationstheflow over theflared-

coneat anangleof attackof 0.2° wasexamined.
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3 Results and Discussion

3.1 Test Conditions and Test Cases

All tests were conducted at a freestream unit Reynolds number of 2.82x106/ft. At

this Reynolds number, quiet flow extended over most of the model surface and uniform

mean flow extended over the entire model surface for both model configurations. The

nature of this freestream quiet flow is discussed in Section 3.2.

The complete matrix of tests conducted in this investigation is presented in Table

1. The results from the tests, listed in Table 1, are described below in the following

order. First, the freestream measurements are discussed. Next, the straight cone

measurements are discussed. Finally, the blunt-nose flared-cone measurements are

discussed. The latter measurements consist of 5 primary data sets: i) the noisy vs. quiet

surface temperature and spectra data; ii) the surface temperatures for all flared-cone test

cases; iii) the spectral data for the stable blunt-nose test cases; iv) the surface and

boundary layer data of the sharp-tip case; and v) the surface and boundary layer data of

the rn=l/32" case.

3.2 Freestream Measurements

Freestream measurements were conducted to quantify the mean and unsteady flow

field of the freestream flow. These measurements consisted of Mach number

measurements, rms measurements, and spectra measurements conducted with the bleed

valves open. Each of these measurements is discussed next. (The freestream

measurement coordinate system is shown in Figure 12.)

Figure 15 shows the Mach number contours in the centerline plane (Zn--0) of the

nozzle. The freestream flow is from left to right. The contours suggest that the flow is
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quite uniform. On average,the Mach numberis 5.91 + 1.4% throughout the domain

shown. More importantly, the model placements were entirely within this domain. A

small Mach number gradient exists along the centerline (Yn=0) which is believed to be

due to the replating of the original nozzle [12]. Overall, the flow is uniform in the

centerline plane. However, in order to determine whether or not the flow field was

axisymmetric, further measurements were conducted in vertical planes of the nozzle.

Figure 16 presents the freestream Mach number contours in two vertical planes of

the nozzle located at Xn=23.26" and Xn=36.76". The flow is coming out of the page

along lines perpendicular to the page. Figure 16a shows Math number data in the

vertical plane containing the leading edge stagnation point of the flared-cone model

(Xn=23.26"). Figure 16b shows Mach number data in the vertical plane located near the

downstream end of the boundary layer traverse measurement regime (Xn=36.76"). The

data presented in both figures suggest that the flow field is nearly axisymmetric. The

degree of asymmetry is within 1% of the mean Mach number for any given radius at both

Xn-locations, and for several other Xn-locations presented in Ref. 28. Furthermore,

during the Mach number traverses of the freestream flow, the Xn-traverse path was about

0.5 ° relative to the nozzle centedine in horizontal planes (i.e. Xn,Yn-plane) of the nozzle.

This slight angularity is consistent with the slight asymmetry shown in the figure, so the

0.5 ° angularity is partially responsible for the slight asymmetry shown. Thus, the degree

of asymmetry is less than 1% of the mean Mach number for any given radius at a

particular Xn-location. Overall, the freestream flow field is quite axisymmetric.

Figure 15 indicated that the flow field in the centerline plane of the nozzle was

nearly uniform, and Figure 16 indicated that the flow field was quite axisymmetric.

Furthermore, the flow volume formed by rotating the centerline plane about the nozzle

centerline encompasses the surfaces of both models. Thus, the presented results suggest

that the entire model surfaces were within a uniform mean flow region.
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The freestreamrms contoursin the centerlineplaneof the nozzleareshownin

Figure 17. Again, the flow is from left to right. For the testfreestreamunit Reynolds

number,transitiononsetoccursaroundXn=26" alongthenozzlewall. Eachcontourline,

therefore,representsacousticdisturbancesradiating from the nozzlewall transitional

boundarylayer. The lines closestto the wall (i.e. large Yn) radiateat anangle that

compareswell with the local Machangle.Thisverifiesthatthedisturbancesareradiating

alongMachlines. At Xn=37.5",theflared-conemodelsurfaceis just outsidetheacoustic

radiationfield. This locationcorrespondsto X=14.25"alongthemodel. Thus,upstream

of X<14.25", the flared-conemodelsurfaceis within quiet flow. (Similar resultsalso

apply for thestraightcone).

Note that the transitiononsetlocation,Xn-_26",wasbasedon a moresensitive

criterion [28] thanreference[34] wheretransitiononsetwasestimatedat Xn-_36". If the

latterestimatewasusedthentheacousticradiationfield would remainoutsidetheentire

model surfaceregion. Thus, though the radiation shown in Figure 17 is finite, the

disturbancelevelsare"very small".

The freestreamspectraalong the nozzlecenterline(Yn=Zn=0) arepresentedin

Figure 18. The signal-to-noiseratio is greaterthan one at the furthest downstream

location,Rexn=9.35x106,for f<6 kHz andat all streamwiselocationsin the frequency

range,12-18kHz. (Notethat Rexn=9.35x106correspondsto Xn=39.76",thenozzleexit).

However, the S/N--1 for all other regions. Theseresults suggestthat the acoustic

radiation is negligible at the nozzlecenterlinefor Xn<39.76" as verified in Figure 17

from thermscontours.

Thenormalizedfreestreamspectrain thecenterlineplaneareshownin Figure19

at Yn= 5:1.25" asa functionof streamwisedistance.Theinstrumentationnoisepsdwas

subtractedfrom the full signalpsdto obtainthe"noiseless"spectrashownin the figure;

both A andAMA X represent "noiseless" spectra. Also, the Yn=l.25" spectra are shifted
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0.25" upstreamrelativeto the Yn= -1.25" to separate the spectra at the two Yn-locations

from each other. The data indicate that the spectra are very similar on either side of the

centerline which verifies the uniformity of the disturbances in the centerline plane.

Again, the S/N>I only for the last streamwise location, Xn=39.76", where the freestream

disturbance energy is predominantly in the frequency range, 0-20 kHz. This compares

well with Figure 17 which shows an acoustic radiation field present at Yn= 1.25" at this

location. Overall, the spectra show uniform low-level disturbances in the centerline plane

for Yn= + 1.25" which is expected if the flow is axisymmetric.

The normalized freestream spectra in the centerline plane are shown in Figure 20

at Yn= + 2.5" as a function of streamwise distance. The data were treated in the same

manner with respect to noise subtraction and streamwise shifting as previously outlined

for the Yn= + 1.25" case. Similar to the Yn= + 1.25" case, the data show uniformity for

all Xn-locations. The S/N>I for the last 2 streamwise locations, Xn=39.76" and

Xn=35.76", comparing well with the acoustic radiation field presented in Figure 17 at

Yn=2.5" at the same 2 Xn-locations. Furthermore, the disturbance energy is

predominately in the 0-50 kHz frequency range at these last two streamwise locations.

Overall, the spectra show uniform disturbances in the centerline plane for Yn= + 2.5"

which compares well with the Yn= + 1.25" spectra.

Summarizing the fluctuation data, the data at Yn= + 1.25" compares well with

Yn= -1.25", and the data at Yn= + 2.5" compares well with Yn= -2.5". Furthermore, the

Yn>0 rms contour data shown in Figure 17 are very similar to the Yn<0 rms contour data

which were not presented. These observations suggest that the acoustic disturbances are

axisymmetric and radiate in a conical pattern from the nozzle wall. The apex of this

conical disturbance field is downstream of Xn--45" along the nozzle centedine.

In summary, a uniform free stream flow with a conical-shaped quiet core, within

which the test models may be placed, has be identified and documented. A uniform mean
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flow is important for stability experimentsto ensurethat instability waves are not

generateddueto meanflow gradientsin theflow field. Furthermore,thequietflow field

is important for stability experiments to eliminate spurious instability waves in the

boundary layer, which are generated by a "large" disturbance "noisy" freestream

environment. That is, for "quiet" flow, the freestream disturbances are imposed on the

boundary layer as "small" amplitude disturbances. Only the latter disturbances can

generate instability waves in the boundary layer that develop and grow in a relatively

"slow" process (i.e. natural transition process). Thus, the quiet nozzle is well suited for

the present stability experiments. These experiments will be discussed next, after a brief

discussion concerning the S/N ratio.

Note that though the "noise" was subtracted for the Yn= _+ 1.25" and Yn= + 2.5"

spectra, S/N problems (i.e. S/N<I) occurred at distinct but arbitrary frequency bands in

the entire 0-150 kHz range for the freestream measurements. (Note that S/N< 1 areas are

observed by AJAMAx<0 values.) Though such problems are expected at low Rexn, these

S/N problems were also evident at the maximum Rexn. Thus, an explanation of the

possible reasons for these S/N problems is needed.

Some possible explanations for the S/N problems are: i) the noise spectrum

measurements were conducted with the tunnel and all the data acquisition and control

equipment powered on but with the hot-wire out of the main freestream flow field, so the

noise spectrum may contain some flow components induced by secondary flow in the

NTC; ii) a more thorough analysis of the CVA system may warrant that simple

subtraction of the psd amplitudes, at Vw-values corresponding to the test Vw's, is not the

best approach for subtracting noise; and iii) for a transitional boundary layer in a quiet

tunnel, the S/N--1 for frequency bands outside the low-frequency, first mode, second

mode, and harmonic frequency ranges. The relevancy of these S/N problems for the

boundary layer stability hot-wire surveys is discussed next.
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For qualitative presentation of the spectra, which is the case for the freestream

spectra, these S/N<I problems are not crucial in evaluating the energy content of the

freestream flow field. However, an attempt was also made to subtract the noise for the

boundary layer spectra and similar problems occurred for these spectra. Since the

boundary layer fluctuation measurements were used for "quasi-quantitative"

amplification rate, and rms mass flux & total temperature data, the noise was not

subtracted for the remaining spectra presented in this work.

3.3 Straight Cone

The straight cone fluctuation spectra are presented in Figure 21 for the range

R=2002-2355. Upstream, the disturbance energy is distributed mainly in the 0-10 kHz

frequency range, but this frequency range widens in the downstream direction, becoming

0-20 kHz at the most downstream location. Similar low frequency disturbances are also

present in the freestream spectra previously discussed. Therefore, this low frequency

disturbance energy may represent the footprint of the freestream spectra since the

widening and growth of the low frequency band is consistent with the increased

freestream acoustic radiation levels in the downstream direction.

However, the higher frequencies, f > 40 kHz, are of main concern in this

investigation. To determine whether the integrated growth rates of either the first or

second modes were sufficient for transition onset, which should be measurable, LST [23]

was relied upon. Based on LST calculations, the maximum N-factors at R=2173 (X=20")

are 5 and 5.3 for the f'Lrst and second modes, respectively. (For the LST calculations, a

20" long straight cone model was used). For the quiet tunnel, N-factors on the order of 8

are estimated for transition onset. Thus, no transition is expected for X < 20", which is

consistent with the data of Figure 21. However, these N-factors may be sufficient for

measuring first or second mode disturbances. Furthermore, the existence of instability
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waves is difficult to discernfrom Figure 21 due to the low frequencyenergy which

severelydistortstheamplitudescalefor f > 20kHz. Consequently,the40-65kHz band,

or most unstablefirst modeband [23], and the 160-190kHz band, or most unstable

secondmodeband[23],wereexaminedmoreclosely.

The resultsof this closerexaminationarepresentedin Figure 22 for the range

R=2000-2355.Thedataof Figure22arepresenta frontal view of thefluctuationspectra

of Figure 21 over the most unstablefirst modefrequencyrange,40-65 kHz. The first

modeis centeredaround51 kHz from 47-54 kHz which is within the most unstable

frequencyrangepredictedby linearstability theory [23]. (Note that the LST N-factors

areabout 5 at R=2173 for frequencies in the range 50-70 kHz.) The first three R-locations

are essentially at the noise level of the CVA system. But, from R=2060 to the last

measurement location, the 51 kHz center frequency amplitude grows by a factor of about

2.7, comparing reasonably well with the (linear) extrapolated LST result of 3.0.

However, the disturbance amplitude growth is masked at the last R-location by the

disturbance energy at the low frequencies.

The integrated growth rates of the second mode most unstable frequency band,

160-190 kHz, are presented in Figure 22b. (Not that the maximum N-factor at R=2173 is

about 5.3 and occurs for f=lS0 kHz.) In the upstream region, R < 2200, no "real" growth

is apparent, as expected, and thus all the growth rates for each frequency are comparable.

However, for R > 2200, the 161 kHz grows exponentially (i.e. linear stability regime)

over the small region, 2250 < R < 2300, but the 171 kHz and 190 kHz frequencies show

no clear exponential growth. The most unstable frequency, 180 kHz, grows

exponentially from R=2225 to R=2330. Over this linear stability regime, the change in

ln(A/Ao), for f=179 kHz, is approximately 0.58, comparing well with the linear

extrapolation [23] of 0.56 for f=180 kHz. Overall, the experimental results show the
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presenceof secondmodedisturbancesfor thestraight cone. Furthermore,the LST and

experimental data compare reasonably well in the linear stability regime.

3.4 "Noisy" vs. "Quiet" Tunnel Comparison

Surface Temperature Data

The flared-cone, sharp-tip surface temperature data with the tunnel operated in

both bleed valve closed ("noisy") and open ("quiet") modes are compared with Navier-

Stokes predictions [32] in Figure 23. For the upstream locations, X < 5", the bleed valves

open (bvo) data compare better with the Navier-Stokes data than the bleed valves closed

(bvc) data, verifying that the bvc mode represents an off-design mode. Yet, the recovery

factor for both modes is about 0.84 at X=2" which compares well with the laminar

recovery factor. Comparing the sharp temperature rise regions for each mode, the bvc

transition onset location is at least 7" upstream of the bvo mode. (A similar trend was

observed in Mach 3.5 flow by Beckwith et al [35].) The sharp temperature rise indicates

the transitional nature of the boundary layer since a transitioning boundary layer is heated

and this heat is convected to the wall by turbulent vortices that heat the cone surface.

Thus, the boundary layer is clearly transitional at about X=I 1" for the bvc mode and this

tunnel operating mode was not used for stability experiments since the stability

measurements were conducted for X > 10.97".

Along the nozzle wall, the boundary layer is fully turbulent for the bvc mode,

producing substantially higher levels of acoustics disturbances relative to the bvo mode

where the boundary layer is only laminar-to-transitional. This causes transition to move

upstream along the model for the bvc mode relative to the bvo mode. Thus, similar

upstream movement would occur in a conventional tunnel at the same test Reynolds

number and Mach number as the present investigation. To circumvent this problem,

stability experiments conducted in conventional tunnels are conducted at lower Reynolds
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numbers where the nozzle wall acoustic radiation is minimal. Consequently,

interpretation of the bvc data as indicating a similar test environment as conventional

tunnels is only the case if the conventional tunnel is operated at relatively high Reynolds

numbers where acoustic radiation is substantial. Overall, however, the quiet tunnel

allows stability experiments to be conducted at higher Reynolds numbers than

conventional wind tunnels for a given Math number flow.

Spectral Data

The flared-cone, sharp-tip fluctuation spectra are presented in Figure 24 from

X=10.97" to X=18.97" with the tunnel operated in bye mode. The spectra measurements

were conducted at the maximum disturbance energy (i.e. maximum rms) location in the

boundary layer at each X-location. From X=10.97" to X=16.97", the boundary layer is

clearly transitional with disturbance energy distributed over a fairly wide frequency-range

from 0 to 400 kHz and peak energy (i.e. maximum amplitudes) in the 0-20 kHz range.

Observing Figure 23, this X-range corresponds to both the sharp temperature rise region

associated with transition onset and the subsequent temperature decrease associated with

the initial stages of fully turbulent flow. For X > 16.97", the peak disturbance energy

initially in the 0-20 kHz range is shown dispersed to higher frequencies. The disturbance

energy is spread more broadly suggesting a fully turbulent boundary layer. This turbulent

region compares well with the thermocouple data of Figure 23. For the bvc data of

Figure 23, the temperature is relatively constant for X > 16.97", reflecting a fully

turbulent boundary layer. Also, the recovery factor is about 0.884 which is within 1% of

the theoretical turbulent recovery factor of 0.892. This concludes the discussion of the

measurements related to the nature of the quiet tunnel, and the flared-cone results are

discussed next.
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The wall temperatures normalized by the freestream total temperature are

presented in Figure 25 as a function of R for each flared-cone nose-tip tested in this

investigation. In general, relative to the sharp-tip case, "small" nose-tip bluntness moves

transition rearward. But, at a certain nose-tip bluntness the transition point moves

forward and eventually is located forward of the sharp-tip transition location for "large"

nose-tip bluntness [18-20]. (These trends are for straight cone and biconic geometries but

similar trends should also hold for the flared-cone geometry.) Based upon the surface

temperature trends outlined in Section 3.4, inspection of Figure 25 indicates that nose-tip

bluntness has stabilized the boundary layer since transition has moved downstream

relative to the sharp-tip case. Furthermore, since no evidence of a forward movement of

transition is evident, the nose-tip bluntness at which transition moves forward cannot be

ascertained from this data. The upstream temperature levels increase with nose-tip

bluntness, suggesting that the surface temperature approaches the stagnation temperature

at the leading edge stagnation point as rn increases. The heating rate in the vicinity of the

leading edge stagnation point is proportional to Tr-Tw ~ To**-Tw (Tr = recovery temp).

Thus, as Tw/To** =_ 1, the heating rate =_ 0. The increases in Tw/To** (i.e. decreased

heating rate) with increasing rn is consistent with theory which states that the heating rate

is proportional to the inverse of the square root of the nose radius.

For the rn=l/8" case, the temperature decreases montonicaUy, indicating that the

boundary layer is laminar over the measurement region. For the rn=l/8" case, the

temperature increases slightly for R > 1600 yet remains essentially constant for R > 1900,

which is consistent with expected laminar profile over this region. However, for both the

sharp-tip and rn=l/32" cases, the temperature rises for R > 1550, reflecting the
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transitionalstateof theboundarylayer. The sharp-tiprise is more rapid than the 1/32"

case, since small bluntness moves transition downstream and thus the 1/32" case is only

in the initial stages of transition relative to the sharp-tip case. Overall, the nose-tip

studies in this investigation are relatively "small" as reflected by their stabilizing nature.

To verify the stability of the boundary layer for the 1/16" and 1/8" cases, spectra were

also measured for these cases and are presented in the next section.

3.6 Spectral Measurements for Flared-Cone Stable Blunt

Cases

As previously discussed, the low frequency energy, in the 0 to 10 kHz range,

distorts the amplitude scale. In addition, the LST calculations [23] predict the first mode

range, 50-80 kHz, for the sharp-tip case. (This frequency range is also the approximate

frequency range for the blunt cases). Based on these considerations, the spectra presented

in this section as well as the spectra presented throughout the remainder of this work are

presented for f > 13.6 kHz.

rn=1/16" Spectra

The fluctuation spectra for the rn=l/16" nose-radius test case are presented in

Figure 26 for the range 166 _<s/r n _< 296. These data were measured at the maximum

energy location in the boundary layer for each streamwise location. A second mode

disturbance is not evident from this data. (The energy content for f > 100 kHz represents

instrumentation and tunnel operational noise because: i) the amplitudes are fixed with

respect to s/r n (no growth); ii) the amplitudes are at a fixed frequency; and iii) the

amplitudes are "low" level.) A closer examination of the spectra in the f=100-300 kHz

range for the downstream regions, s/m=225-300, also indicated the non-existence of

second mode disturbances. However, over the first three upstream locations, 166 _<s/r n _<

182, first mode disturbance growth is evident in the 55-65 kHz frequency range. These
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downstream locations, 263 < s/r n < 296, the first mode grows again.
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For the most

However, this

growth is masked by the lower frequency disturbances, similar to the straight cone

spectra, and is not substantial. Overall, the rn=l/16" case is definitely stable for the

second mode and mostly stable for the first mode. These conclusions are consistent with

the thermocouple data previously discussed and the schlieren data (not presented) since

both data sets provide no evidence of a transitional boundary layer.

Based on blunt, straight cone analytical relations [36], the entropy layer

swallowing location is at approximately S/rn=272. Theoretically, the entropy layer

swallowing region is a site for receptivity but the spectra of Figure 26 show no evidence

of increased disturbance levels in the s/rn=272 region. (Also, the hot-wire rms profiles

were conducted to locations outside the boundary layer and no increased disturbance

levels were evident.) Thus, no evidence of a receptivity site, located in the vicinity of the

entropy layer swallowing region, was found for the 1/16" test case.

rn=l]8" Spectra

The fluctuation spectra for the rn=l/8" nose-radius test case are presented in

Figure 27 for the range 78 < s/r n < 143. Again, these data were measured at the

maximum energy location in the boundary layer for each streamwise location. (Note that

the s-range surveyed for both the 1116" and 1/8" test cases is about 8.1".) Similar to the

1/16" case, both the presented data in Figure 27 and a closer examination of the data

show no evidence of a second mode disturbance. (Only instrumentation and tunnel

operational noise is evident in the higher frequency range, f> 100 kHz.) However, over

the first four upstream locations, 78 < s/r n <90, f'u'st mode disturbance growth is evident

in the 55-65 kHz frequency range, a similar range to the 1/16" case. For this s/r n range,

the maximum amplitude occurs at S/rn=90, or s=l 1.28". In contrast, for the 1/16" case,

the maximum amplitude occurs at s/rn=166, or s=10.39", over the upstream growth
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region. More importantly, the maximum amplitude is greater for the 1/8" case relative to

the 1/16" case, reflecting larger growth. (Note that the same hot-wire was used for both

cases and the small difference in locations, 10.39" compared to 11.28", could not account

for the amplitude differences). The 1/8" case has a lower local Reynolds number than the

1/16" case in the vicinity of s=10=-I 1". Furthermore, the growth of the first mode is more

prominent at these lower Reynolds number conditions since the first mode is a viscous

instability. Thus, the greater first mode growth for the 1/8" case is consistent with theory.

Moving further downstream, as shown in Figure 27, the disturbances are

attenuated from 94 _<s/r n < 115. But, over the most downstream locations, 119 < s/r n _<

143, the fu'st mode amplitudes grow again yet this growth is masked by the lower

frequency disturbances. Similar to the 1/16" case, the downstream growth is not

substantial. Overall, the rn=l/8" case is stable for the second mode and mostly stable for

the first mode. Again, these conclusions are consistent with the thermocouple and

schlieren data. Based on reference [36], the entropy layer swallowing location is at about

s/rn=345 and thus the possible receptivity site cannot be ascertained from this data.

3.7 Sharp-Tip Flared-Cone Case

The most extensive analysis of this investigation was conducted for the sharp-tip

flared-cone test case. As a result, this section is divided into 3 subsections as follows: i)

presentation of the hot-wire calibration data ; ii) presentation of the schlieren and surface

data; and iii) presentation of the boundary layer data. The surface data consists of both

thermocouple and pressure data, and the boundary layer data consists of both mean and

fluctuation CVA output data. Mean and rms mass flux and total temperatures are also

presented for this test case. Note that, except for the qualitative data presented in Figure

46, one hot-wire was used for all the results presented in this section.
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3.7.1 Calibration Data

Calibration data were obtained for the primary purpose of obtaining mean and rms

mass flux and total temperature profiles. However, these profiles are deferred to section

3.7.3. This section, instead, focuses on the fluctuating data used to calculate the psd data.

There are three main areas of focus in this section. First, the calibration range of the

tunnel and the significance of this calibration range will be discussed. Second, the mixed

mode sensitivity (i.e. sensitivity to both mass flux and total temperature) of the CVA

output voltage is shown for the operating range of the CVA used in this investigation.

Thus, proper interpretation of the psd data must take into consideration this mixed mode

sensitivity. The final area of focus is the presentation of the overall mass flux and total

temperature sensitivities as a function of R at the maximum energy locations. This data

can be used to determine the overall change in the CVA output voltage to both the mass

flux and total temperature over the entire R-range surveyed. (Note that throughout this

section, the term sensitivity is used to denote the static sensitivity of the CVA).

Calibration Range

In this investigation, only about the outer one-third of the sharp-tip boundary layer

was surveyed. The corresponding boundary layer survey region extended over the range

(0.61-1.36)5 at R=1785 (X=13.47") and over the range (0.68-1.48)5 at R=2120

(X=18.97"). For the remaining R-locations, 1785<R<2120, the lower boundary layer

survey point is in the range (0.61-0.68)5, and the upper boundary layer survey point is in

the range (1.36-1.48)5. Based on these survey regions, CFD calculations were used to

determine the corresponding total temperature and mass flux ranges that were needed to

calibrate over these survey regions. For the freestream conditions conducted in this

investigation, ranges of 0.98 (To)**< To < 1.03 (To)** and 0.3 (pU)** < pU < 2.2 (pU)**

were needed for the total temperature and mass flux, respectively. However, the
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allowablerangesof the tunnel are 0.97 (T"o)**< _ < 1.03 (T'o)** and 0.96 (p'U)**< p-'U <

1.9. (pU)** for the total temperature and mass flux, respectively. Thus, the tunnel was

capable of providing the needed total temperature range but was not capable of providing

the needed mass flux range. So, in this investigation, extrapolation of the calibration data

was conducted in order to calibrate over the entire boundary layer survey region.

However, to calibrate over the (0.8-0.9)_i range for each streamwise location, a

mass flux range of 1.1 (p'U)** < p'U < 1.9 (p'U)**was needed. Thus, no extrapolation of

the calibration data was needed in the crucial critical layer region, (0.8-0.9)& (Note that

a calibration tunnel which provided the needed mass flux and total temperature ranges for

the entire boundary layer was not available for the present experiments.)

Mixed Mode Sensitivity

The normalized total temperature sensitivities (ordinate) as a function of

normalized total temperature are presented in Figure 28 at a constant mass flux. The data

are presented for 7 Vw-values. The abscissa scale from 0.976 (T-o)** < T-o < 1.03 (T-o)**

represents the total temperature range used for the calibration data. As shown, only 3

total temperatures were used for calibration which was practically sufficient for the small

total temperature range of interest. Beginning at the lowest Vw, the difference in

sensitivities between successive Vw=constant curves decreases as Vw increases. For the

largest 3 Vw-values, the total temperature sensitivity differences are minimal. These

trends suggest that as Vw increases the total temperature contribution to the full CVA

output voltage becomes smaller. That is, the CVA is more sensitive to total temperature

fluctuations at low Vw. Similarly, the CTA system is more sensitive to total temperature

at low overheat ratios [31 ].

The normalized mass flux sensitivities (ordinate) as a function of normalized mass

flux are presented in Figure 29 at a constant total temperature. Again, the data are

presented for 7 Vw-values; each curve represents a different Vw value. (The actual Vw-
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values are listed in the box of Figure 28). In contrast to the total temperature sensitivity,

starting at the lowest Vw, the difference in mass flux sensitivities between successive

Vw=constant curves increases as Vw increases. This suggest that as Vw increases the

mass flux contribution to the CVA output voltage becomes larger. That is, the CVA is

more sensitive to mass flux fluctuations at high Vw. Similarly, the CTA system is more

sensitive to mass flux at high overheat ratios [31].

Comparing both Figures 28 and 29, two additional trends are common for both

the mass flux and total temperature sensitivities. First, as Vw increases the net change in

total temperature sensitivity and mass flux sensitivity for each Vw=constant curve

increases over the full abscissa range. This indicates that the CVA is more sensitive to

both fluctuations as Vw increases. Furthermore, the overall magnitudes of mass flux and

total temperature sensitivities increases with Vw. This trend also suggests that the CVA

is more sensitive to both fluctuations as Vw increases. Although both of these trends

suggest a higher mass flux and total temperature sensitivity at higher Vw, the crucial

point is that the CVA is more sensitive to mass flux at high Vw and more sensitive to total

temperature at low Vw. Also, since the Vw-range presented, represents the Vw-range used

for the boundary layer surveys, the mixed mode sensitivity (i.e. sensitivity to both mass

flux and total temperature) is apparent even for the highest Vw.

The relative sensitivity as a function of Vw is presented in Figure 30 for three total

temperatures. The relative sensitivities are presented for a constant mass flux of

1.442 (flU)**. Based on CFD calculations, this value corresponds to the mass flux near

the boundary edge at R=1785 (X=13.47") which represents the most upstream location

for the sharp-tip fluctuation measurements presented in this work. Since the boundary

layer thickness decreases with R, the 1.442 (p'U)** mass flux will occur lower in the

boundary layer as R increases but should remain in the critical layer region. The data of

Figure 30 suggest that the CVA is more sensitive to mass flux as Vw increases since the
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relativesensitivitydecreaseswith Vw. Likewise,thedatasuggeststhattheCVA is more

sensitiveto total temperatureasVw decreases.Similar resultsarealsoobservedat mass

flux valuesdifferentthan1.442(pU)**.

In orderto calculatethemassflux andtotal temperaturerms andmeanprofiles,

theentireVw-rangeshownwasused.However,thefluctuationamplitudemeasurements,

usedto calculatethepowerspectraldensity,wereconductedat only the maximumVw.

At this Vw, theCVA wassensitiveto bothtotal temperatureandmassflux aspreviously

discussed. But, the relative sensitivity dataindicatesthat the fluctuation amplitudeis

moresensitiveto changesin massflux asopposedto changesin total temperatureat the

maximum Vw. Thus,all spectraandamplificationratespresentedin this investigation

werecalculatedat thehighestpracticableVw.

Overall Sensitivities

The normalized total temperature (left ordinate) and normalized total temperature

sensitivities (right ordinate) are plotted as a function of R in Figure 31. These values are

plotted at the maximum energy locations at each R-location. Also note that the

sensitivities are calculated at the maximum Vw. The maximum energy locations are in

the range (0.8-0.9)8, so these points are within the calibration mass flux and total

temperature range (refer to Calibration Range section). By inspection of the left ordinate

data of Figure 31, the total temperature changes only about 4% for the full R-range. In

addition, the change in total temperature sensitivity due to changes in both total

temperature and mass flux is only about 5% over the full R-range as seen from the right

ordinate data. Thus, any change in total temperature sensitivity are small for the entire R-

range surveyed. Furthermore, the largest change in total temperature sensitivity between

any two successive station occurs between R=1945 and 1975. This change is only about

2%.
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The normalized mass flux (left ordinate) and mass flux sensitivities (right

ordinate)areplottedasa functionof R in Figure32. Thesevaluesarealsoplottedat the

maximum energy locations at each R-location. Also note that the sensitivities are

calculatedatthemaximumVw. From theleft ordinatedata,themassflux changesabout

34%overthe full R-range.However,thechangein massflux sensitivitydueto changes

in both total temperature and mass flux is only 11.5% over the full R-range as observed

from the right ordinate data. These changes are relatively small when compared to the

expected exponential disturbance growth in the linear region. Furthermore, the largest

change in mass flux sensitivity between any two successive stations occurs between

R=1945 and 1975. This change is only about 7.4%.

In summary, the maximum change in total temperature sensitivity and mass flux

sensitivity between any two successive stations is about 2% and 7.4%, respectively.

Thus, the total change in voltage fluctuation due to changes in both total temperature and

mass flux is on the order of 8%. Since the CVA used in this investigation is a fixed time

compensation unit, a maximum error of about 8% in the CVA output voltage fluctuation

is due to changes in the mean mass flux and/or total temperature that occur from one

streamwise location to another at the maximum energy location. In the linear stability

region, the fluctuation disturbances grow exponentially which is much larger than the

maximum 8% change in CVA output voltage fluctuation due to changes in the mean

flow. That is, the measured fluctuation voltage growth is comprised mainly of the

instability wave disturbance growth. Thus, the condition outlined in Section 2.1.5 for

comparing uncalibrated amplification rates with numerical amplification rates is met.

Therefore, the amplification rates derived from these uncalibrated fluctuation

measurements should compare well with numerical amplification rates in the linear

stability region.
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On theother hand, in the non-linear stability region, the amplification rates differ

depending on the flow variable (i.e. mass flux, total temperature, etc.). Furthermore, for

strongly non-linear disturbances, where disturbance growth becomes saturated, the

maximum 8% change in the output fluctuation voltage due to changes in the mean flow is

likely on the order of the disturbance growth. Thus, fluctuation measurements in this

regime would be erroneous unless an automatic compensation anemometer was used.

Thus, amplification rate measurements in this regime were not considered in this

investigation.

However, in the weakly non-linear regime where the disturbance growth is

substantial relative to the 8% change in output fluctuation voltage, the uncalibrated

amplification rates can be validly compared with the PSE [9-10] or DNS [11] approaches.

As discussed in the mixed mode sensitivity section, the CVA was operated under

conditions where changes in output voltage fluctuations were mostly comprised of

changes in mass flux fluctuations. Thus, the experimentally-derived amplification rates

in the weakly non-linear region are mainly of a mass flux nature. Comparisons with

theoretically-derived mass flux amplification rates using either a PSE or DNS approach

would then be appropriate. Since the experimental amplification rate data presented in

this investigation extended only to the weakly non-linear region, these data should

compare reasonably well to theoretical mass flux amplification rates.

3.7.2 Schlieren Data and Surface Data

Surface Pressure Data

The surface static pressure profile is presented in Figure 33. Experimental data

are presented along three rays spaced as shown in the figure; these data were obtained for

different wind tunnel runs. Navier-Stokes [32] axisymmetric (i.e. 0 ° pitch and yaw)

pressure data, Navier-Stokes [33] 0.2 ° windward pressure data, and the Taylor Maccoll
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inviscidstraightconesurfacepressuredataarealsopresented.Notethattheexperimental

pressureerrorof Pw/P**-+ 0.0064 is approximately the height of the symbols, so error

bars are not shown. Over the straight cone region, X < 10", and at X=13", the

experimental data compare better with the axisymmetric CFD data, except for Ray 1 at

X=9.5". The windward tendency of the experimental data is not observed until

downstream of the flare-cone junction, X > 13". Thus, the straight cone region is not as

sensitive to model misalignments as the flared region. Generally, for X > 14", the

experimental data compare better with the 0.2 ° CFD data. The experimental data

increase above the 0.2 ° wind CFD data for X > 16", reflecting the transitional nature of

the boundary layer. Thus, the only useful range for determining the effective flow angle,

between a given ray and the freestream, is the 14" < X < 15" range.

The yaw misalignment is estimated by comparing both sets of CFD data with Ray

3 over the range 14" < X < 15". Over this X-range, the pressures for Ray 3 are

approximately halfway between the axisymmetric and 0.2 ° windward CFD pressure,

reflecting a 0.1 ° windward tendency. As previously discussed, for the pressure

measurements, the boundary layer measurement ray (0= 180 °) yaw angle was estimated at

a geometric 0.1 ° + 0.05 ° leeward angle. This estimate is consistent with Ray 3 (0--0°),

reflecting a 0.1 ° windward character. Furthermore, the estimated geometric yaw angle

corresponds well with the flow yaw angle of the present data. Therefore, estimating the

boundary layer measurement ray at a flow 0.1 ° + 0.05 ° windward yaw angle is

reasonable. Furthermore, the boundary layer measurement ray was estimated at a

geometric 0.2 ° 4- 0.05 ° yaw angle for all non-pressure measurements presented in this

investigation. Based on the above conclusions, an estimate of aflow 0.2 ° _ 0.05 ° yaw

angle is reasonable for the non-pressure measurements.

The pitch misalignment is estimated by comparing Rays 1 and 2 with both sets of

CFD data o,_er the range 14" < X < 15". For this X-range, Rays 1 and 2 both reflect a
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windwardtendency, though Ray 1 reflects a slightly larger windward tendency relative to

Ray 2. However, these conclusions are misleading. Since Rays 1 and 2 are spaced 180 °

apart then either both rays are at 0 ° yaw (case 1), or one ray is at a 13° windward pitch

angle while the other is at a I_° leeward pitch angle (case 2). If the transitional boundary

layer effects the wall as far upstream as, 14" < X <15", then case 1 would follow since

both rays would rise above the axisymmetric CFD and the pressures would be

comparable as shown in Figure 33. Since Rays 1 and 2 are not relevant to the boundary

layer measurements conducted opposite Ray 3 (0=180°), no further explanation will be

given for these anomalies. However, based on the present data, using the pressure data to

align the model at 0 ° pitch and yaw may be a difficult task.

Surface Temperature Data

Prior to discussing the surface temperature measurements, transition onset

estimated using the surface temperature measurement ray is first discussed in relation to

transition onset estimated using the boundary layer measurement ray. (Refer to the

circular diagram inset of Figure 33 for the 0-orientation.). The surface temperature

measurements of Figure 34 were conducted at 0=270 ° . But, the boundary layer

measurements were conducted at 0=180% a ray with a 0.2 ° + 0.05°yaw angle.

Subsequent thermocouple measurements at 0=240 ° indicated that transition shifted

downstream by AR=30 relative to the 0=270 ° ray but all other aspects of the temperature

profiles were the same. Thus, a AR=30 is added to the transition onset estimate of Figure

34 to approximately adjust the 0=180 ° estimate to the 0=270 ° boundary layer

measurement ray.

Figure 34 presents the experimental and computational surface temperatures along

the left ordinate and the flared-cone surface coordinates along the right ordinate. The

experimental surface temperature error is 5:2 ° R and the CFD values represent laminar
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The laminarand transitionalregions determined from this

Over the range, R=690-1700, the flow is laminar and the experimental data

compare well with the CFD data. From R=1700 to 1800, the experimental temperatures

increase slightly above the predicted adiabatic wall temperatures. However, only the

sharp temperature rise region, R=1800-2110, is associated with transition since heat from

this region is conducted along the model surface to the region, R=1700-1800, thereby

increasing the temperature over the region, R=1700-1800. Thus, the R=1700-1800

region also represents a laminar region but with an equilibrium temperature greater than

the predicted adiabatic wall temperature.

Another region of interest is the transition onset region. An estimate of transition

onset was determined from the intersection of two straight lines passing through the

laminar region and sharp temperature rise region using the recovery temperature as a

function of X method as outlined in Appendix C [37]. Based on this criterion, transition

onset is estimated in the range R=1960-1990. The estimated onset of transition compares

well with linear stability theory [23] which predicts an N-factor for the most unstable

frequency of about 8 to 8.5 over the range, R=1975-2005. (Note that transition onset

correlated well with N=10 for a straight cone in a Mach 3.5 quiet tunnel [38]).

Downstream of R=2110, the temperature decreases due to the combined effect of a

relatively cold model base and the flow field tending to fully transitional flow. However,

unlike the closed bleed valve data presented in Figure 23, an asymptote designating fully

turbulent flow cannot be ascertained from the present measurements.

Schlieren Data

Schlieren data are presented in Figure 35 over the aft region of the model. The

insert in Figure 35 shows an enlargement of the downstream field of view, R=2085-2180.

A wavy structure can be identified near the edge of the boundary layer. The wavelength
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of these waves is measured to be approximately twice the boundary layer thickness.

These waves (i.e. wave packet) are associated with second mode disturbances [6,21].

The second mode disturbances are In'st detected at about R=2025 according to a closer

examination of the video records used to construct Figure 35. This location is slightly

downstream of the onset of transition as estimated from the surface temperature

measurements.

3.7.3 Boundary Layer Mean Data

Based on the considerations of Section 3.7.2, all of the data presented in this

section were conducted with the boundary layer measurement ray located at aflow 0.2" +

0.05" windward yaw angle. Thus, all comparisons with theory, presented in this section,

will consider the effects of this "small" windward angle when appropriate.

The uncalibrated mean CVA output voltage prof'fles are presented in Figure 36 for

17 streamwise locations. The mean voltage measurements were conducted at the

maximum practicable Vw. The profiles are similar in character to typical mass flux

profiles which is expected based on the considerations outlined in Section 3.7.1.

However, these profiles are only representative of the boundary layer edge region, where

the mean voltage variation is only 18%, or less, at any given streamwise location.

The experimental (thermal) boundary layer thickness distribution, estimated from

the mean voltages at minimum Vw-Section 2.4.1, are presented in Figure 37. Note that

the CFD [32] (velocity) boundary layer thickness distribution was curve fit using a

second order polynomial, and the experimental error = + 2% of the plotted values.

Except for a couple locations over the range, R=I 610-1915, the experimental 8 is slightly

lower than the CFD 8, reflecting a windward tendency consistent with the windward

boundary layer measurement ray. That is, along a windward ray, the pressures are higher

relative to a 0 ° ray, producing a decreased boundary layer thickness relative to a 0 ° ray
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which is representedby the CFD data. From R=1945 to R=2120,the experimental5

becomesgreaterthantheCFD 5,confirming thetransitionalnatureof theboundarylayer

over this region. For 1610_<R _ 1915,the closeagreementbetweenthe laminar flow

CFI) predictions and the experimental data suggests that, experimentally, the mean flow

is laminar over this region (i.e. no mean flow distortion). This laminar character is

confLrmed with the aid of Figures 38 and 39 which are discussed next.

The experimental mean total temperature profiles, calculated from the data of

Figure 36 using the approach of Section 2.4, are presented in Figure 38 at 4 streamwise

locations. Also, CFD laminar total temperature profiles, computed from the Navier-

Stokes code of Ref. 32, are presented as the solid lines in Figure 38. At R=1785, the

experimental and computational data compare well; no effect of the small yaw angle in

the experiment is evident. The good agreement with CFD at R=1785 is typical of all total

temperature data over the range, 1610 _<R _< 1915. This is consistent with the boundary

layer thickness, confLrming the laminar flow region, R _< 1915. However, at R=1945, the

transitional nature of the boundary layer becomes evident due to the slight total

temperature distortion from r1=5.27 (0.706 5) to 11=6.62 (0.887 5). This distortion

becomes more evident further downstream. At R=2035, the total temperature is distorted

from about r1=5.09 (0.734 5) to 11=6.39 (0.921 5). At the most downstream location,

R=2120, the entire presented lower boundary layer region is distorted from _--4.49 (0.680

5) to _=6.18 (0.935 5), marking a "high fluctuating disturbance" region. Overall, the

total temperature distortion occurs in the range, (0.71-0.93) 5, which is in the vicinity of

the critical layer.

The experimental mean mass flux profiles, calculated from the data of Figure 36

using the approach of Section 2.4, are presented in Figure 39 at 4 streamwise locations.

Also, CFD [32] laminar mass flux profiles are presented as the solid lines in Figure 39.

At R=1785, the experimental and computational data compare well. No effect of the
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smallyawanglein theexperimentis evidentfrom themassflux data which is consistent

with the total temperature data at this same location. The good agreement with CFD

shown at R=1785 is typical of all mass flux data over the range, 1610 < R _< 1915. This is

consistent with the boundary layer thickness, confirming the laminar flow region, R <

1915. However, at R=1945, the transitional nature of the boundary layer becomes

evident due to the mass flux distortion from 11=5.61 (0.751 8) to 1"1=6.93 (0.928 8).

Similar to the total temperature data, this distortion becomes more evident further

downstream. At R=2035, the mass flux is distorted from about r1=5.09 (0.734 8) to

rl---6.39 (0.921 8). At the most downstream location, R=2120, the entire presented lower

boundary layer region is distorted from 11--4.49 (0.680 8) to 1"1----6.18(0.935 8), marking a

"high fluctuating disturbance" region. Similar to the total temperature distortion, the

mass flux distortion occurs in the vicinity of the critical layer.

The uncalibrated rms profiles are presented in Figure 40 at the maximum Vw.

The hashed region, from R=1610 to R=1750 represents the measurement range over

which the rms S/N was approximately 1. So, data at these five streamwise locations were

not considered further in this study. Also shown in Figure 40 is the locus of the

maximum disturbance energy. The position of the maxima are at about 80 to 90% of the

boundary layer thickness which is in good agreement with the eigenfunction maxima

locations predicted by stability theory. For the range, 1785 < R < 1945, the S/N > 1, but

no clear indication of rapid maximum rms amplitude growth is evident. However, just

downstream, the rapid growth region occurs over the range, 1975 < R < 2120. The

location of R=1975, is in good agreement with the transition onset location estimated

previously from the temperature data.

Using the data of Figure 40 and the approach of Section 2.4.4, the mass flux and

total temperature rrm were calculated. These data are normalized by the mean mass flux

and total temperatures and presented in Figures 41-43. For brevity, the normalized rms
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quantities are termed rms fluctuations in the discussion below. (Note that the

instrumentation noise was not subtracted for these data and thus only regions where the

signal-to-noise is greater than 1 represent the true fluctuation levels).

The mass flux and total temperature rms fluctuations are presented as a function

of R in Figure 41. The rms fluctuations are presented at the maximum energy locations.

At the most upstream location, R=1785, the mass flux and total temperature rms

fluctuations are 2.1% and 0.5%, respectively. Over the region, 1785 < R < 1945, the

mass flux and total temperature rms fluctuations increase only slightly from their

upstream values. However, over this region, S/N= 1, and thus the actual mass flux and

total temperature rms fluctuations are lower than the values shown. Further downstream,

S/N >1, and the disturbance levels increase for both flow variables. At the most

downstream location, R=2120, the rms fluctuations reach a maximum of 11% and 2.3%

for the mass flux and total temperature, respectively. Thus, from R=1975 to R=2120, the

mass flux rms fluctuation increases by a factor of 5.2 (11/2.1), comparable to the total

temperature increase of 4.6 (2.3/0.5). However, considering each location over the full

R-range, the mass flux rms fluctuation is a factor of 4-8.5 larger than the total

temperature rms fluctuation. Combining this latter result with the fact that the CVA is

operated at the maximum practicable Vw suggest that the disturbance amplification rates

approximate the mass flux amplification rates to first order. (Note, as previously

discussed, this approximation is only important in the non-linear stability regime).

The mass flux and total temperature rms fluctuation profiles are presented in

Figure 42 at R=2035. This location is in the rapid disturbance growth region. For both

the mass flux and total temperature, the rms fluctuation maximum occurs at 13=6.17, or

0.889 8. Thus, the rms fluctuation maxima occur in the critical layer region, (0.8-0.9) _5,

as expected. In addition, over the critical'layer region, the mass flux rms fluctuations are
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greaterthanthe total temperature rms fluctuations by a factor of 8.5. Consequently, the

second mode disturbances are predominantly of a mass flux nature.

The mass flux and total temperature rms fluctuation profiles are presented in

Figure 43 at R=2120, the most downstream location surveyed for the sharp-tip case. For

both the mass flux and total temperature, the rms fluctuation maximum occurs at 11=5.97,

or 0.903 8. Thus, the rms fluctuation maxima occur in the vicinity of the critical layer

region as expected, comparing well with the R=2035 location. In the critical layer region,

the mass flux rms fluctuations are greater than the total temperature rms fluctuations by a

factor of about 4.5 compared with 8.5 for R=2035. Thus, the mass flux dominance of the

second mode disturbances decreases for R > 2035; this trend is also suggested from the

data of Figure 41.

3.7.4 Boundary Layer Fluctuation Data

The fluctuation data are presented in 3 sections: i) presentation of the amplitude

data; ii) presentation of the amplification rate data; and iii) presentation of the global

characteristics of the fluctuation data. The amplitude data provide an overall perspective

of the nature of second mode disturbances and suggest the additional disturbance modes

of interest. The amplification rates provide the local rate of growth of the relevant

disturbance modes and aid in establishing the experimental data in the context of stability

theory. Finally, the fluctuation disturbance wavelengths and integrated growth rates

provide a global perspective of the fluctuation data.

Amplitude Data

The fluctuation spectra are presented in Figures 44 and 45 at the maximum energy

locations. Figure 45 represents the frontal view of the fluctuation spectra of Figure 44.

Before outlining the instability waves of interest from this data, the following

phenomena, concerning second mode disturbances, are discussed over the next four
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paragraphs:i) the boundary layer tuning of the second mode disturbances; ii) the

transition onset location obtained from the spectra data; iii) the shifting of second mode

frequencies due to the small yaw angle of the model; and iv) the second mode disturbance

through the boundary layer at a fixed R-location.

As shown in Figure 44, for R > 1975, the amplitude of the disturbances increases

in the streamwise direction. Furthermore, the frequency of the most amplified

disturbances increases in the streamwise direction as observed from Figure 45. This

observation verifies the boundary layer tuning of the disturbances and also confirms their

second mode character [6]. Specifically, over the range, 1975 < R < 2060, the frequency

of the second mode most amplified disturbances increases, corresponding to the boundary

layer thickness decrease over this same range as observed in Figure 37. Over the range,

2060 < R < 2120 (last 3 streamwise locations), the second mode most amplified

disturbance frequency remains constant at 254 kHz, suggesting a reduction in disturbance

growth rate over this range. This is consistent with the "small" change in boundary layer

thickness over this same range as observed from Figure 37. Overall, the boundary layer

tuning of the disturbances is consistent with the boundary layer thickness data of Figure

37.

Although the disturbance growth rate decreases over the last 3 streamwise

locations, the amplitudes grow to the last measurement station of R=2120 as observed

from Figure 44. Since Kimmel [6,39] defines transition onset over a straight cone as the

streamwise location where the second mode amplitudes reach a maximum before

decaying, transition onset does not occur for R<2120. Downstream of R=2120 the

disturbance amplitudes could decrease, but this cannot be ascertained from the present

data. However, the estimated transition location from the thermocouple, boundary layer

thickness, and mean flow data is about R=1960-1990. Thus, the transition onset location

as defined by Kimmel may not work well for a flared-cone configuration due to the rapid
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growth of the flared-cone disturbances relative to straight cone disturbances. (Kimmel's

definition seems more appropriate for defining the end of transition as opposed to the

beginning). In summary, the transition onset location of about R=1960-1990 corresponds

to the most upstream location of second mode rapid disturbance growth, R=1975.

Since the data presented in Figures 44 and 45 were conducted along a 0.2 ° + 0.05 °

yaw windward ray, an increase in the second mode frequency is expected. That is, along

a windward ray, the surface pressure increases, decreasing the boundary layer thickness

and increasing the frequency relative to the 0 ° case. For 1945 < R < 2120 the most

unstable frequencies in terms of the maximum N-factor is in the frequency range, 245-

255 kHz. Based on LST [23], the most unstable frequency range over the same R-range

is 220-230 kHz. In order to determine the source of this frequency shift, an additional

test was conducted with the boundary layer measurement array aligned as close to a 0 °

yaw angle as possible; the results from this test are presented in Appendix D. The

analysis of the data from this test clearly indicated a most unstable frequency range of

218-228 kHz, conftrming that the frequency shift in the present data is caused by model

misalignment. Furthermore, as shown in Appendix D, this frequency shift is attributed to

a corresponding change in boundary layer thickness, and experimental data compare well

with LST in the linear stability regime.

The fluctuation spectra through the boundary layer at a fixed streamwise location,

R=2120, is presented in Figure 46. (This data was measured using a different hot-wire

than other data presented in Section 3.7.) For R=2120, the second mode frequency band,

210-290 kHz, is constant throughout the boundary layer as expected. In addition, the

amplitude profile of the second mode band, with respect to distance from the wall, is

similar to the stability theory eigenfunction profile. The second mode amplitudes

approach zero at both the wall and boundary layer edge, which is consistent with the

boundary conditions of second mode, subsonic, neutral eigenfunction prof'des [3].
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Theamplification ratesin 3 frequencybandsof interestarediscussedin Figures

47-61. The first frequencyband of interest is from f=65 kHz to f=85 kHz. This

frequency band is associatedwith first mode disturbancesbut these disturbance

amplitudesarenot clearlydiscerniblein Figure44. Thesecondbandof interest,f=110-

130kHz, is associatedwith asub-harmonicof thesecondmode. This bandis discernible

in Figure44 overthe last threeR-locations.Thelastbandof interest,f=210-290kHz, is

associatedwith the secondmodeandis clearly discerniblein Figure 41. (Note that an

additionalfrequencybandof interest,f--495-515kHz, is associatedwith thesecondmode

first harmonicas outlined in Appendix E, but is not present from the spectral data

presentedin this section.)

Amplification Rate Data

Figures 47-58 present the spectra of the amplification rates, fluctuation

amplitudes, and noise amplitudes at 12 streamwise (R) locations on the model flare.

(Note that the right ordinate amplitude scales are 0-0.14 (Figs. 47-50), 0-0.21 (Figs. 51-

54), and 0.70 (Figs. 55-58), and the ratio of amplitude fluctuations to noise spectra are

used to estimate the S/N ratio.) The amplification rate data of Figures 47-58 are

discussed separately below in the following order: fLrst mode, second mode, second mode

sub-harmonic.

In the frequency band 65 kHz to 85 kI-Iz, the existence of the first mode is

established from Figures 47-58. The first mode remains unstable throughout the entire

streamwise range surveyed but the amplification rate remains below 0.005. These

observations compare well with LST [23]. Since the oblique first mode disturbances are

most unstable in supersonic flows [3], only a component of the first mode waves are

measured using the present experimental configuration which is capable of measuring

only 2D waves. Thus, the 65-85 kHz band is lower than the true first mode frequency

range, but the degree of frequency shift cannot be determined from the present data.
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The frequency range, f=210 kHz to 290 kHz, is associated with the second mode.

For R=1785 and R=1880, the S/N--1 for the second mode disturbances except near f=220

kHz. Thus, the second mode is barely detectable as far upstream as R=1785. At R=1850,

the second mode becomes unstable (-oq>0) in a small band around f=225 kHz. From

R=1880 to 1915, the amplification rates are nearly constant in the vicinity of 225 kHz.

However, at R=1945, the second mode amplification rates increase substantially over a

fairly large frequency band. The amplification rates increase at the next location,

R=1975, but decrease montonically in the downstream direction for R > 1975. However,

the second mode remains unstable to the last measurement location, R=2120. As seen

clearly in Figures 52-57, the frequency band associated with the second mode maximum

amplification rate and maximum amplitude do not coincide. This occurs since the

unstable second mode amplitudes shift steadily to higher frequencies due to the overall

thinning of the boundary layer in the downstream direction (i.e. boundary layer tuning).

Thus, the maximum amplification rate is shifted to the higher frequency side of the

unstable second mode frequency band. A similar observation was made by Stetson [6].

Note that the frequency band, 110-130 kHz, associated with the second mode sub-

harmonic was not clearly identifiable from Figure 46. The hot-wire sensitivity to small

disturbances, such as the sub-harmonic, may have been insufficient to measure the sub-

harmonic for the Figure 46 data. However, the sub-harmonic was present in some of the

repeat data conducted for the sharp-tip test case using the same wires. Thus, the sub-

harmonic is not an anomaly of the particular hot-wire used. Since the sub-harmonic was

not present for all repeat runs, it's presence may depend on slightly changing initial

amplitude conditions in the freestream from run to run which affects the subsequent

growth of instability waves in the boundary layer. This process is similar to changing the

forcing frequencies using PSE methods [10]. (However, the authors of Ref. [10] believe

that increasing the amplitudes of the forced sub-harmonic disturbances will not increase
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thesub-harmonicgrowth rate sufficiently for the sub-harmonic to become a "dominant"

instability mode). Due the abstruse nature of this disturbance, further analysis is

presented in the 110-130 kHz frequency range.

The possible sub-harmonic of the second mode is represented by the frequency

band, f=ll0 to 130 kHz. Note that unlike harmonics, which are associated with

nonlinearities [8] of the second mode, the sub-harmonic is considered a separate mode of

oscillation similar to the secondary, sub-harmonic, helical disturbances used as forcing

frequencies in previous PSE [10] and DNS [40] studies. For the range, R=1785-1945, the

S/N=I in the sub-harmonic frequency band. At R=1945, the S/N is slightly greater than

1, locating the most upstream detection of the sub-harmonic. Slightly downstream,

R=1975, the sub-harmonic first becomes unstable. In contrast, initial instability of the

second mode occurs at R=1850. Furthermore, R=1975 marks the location of a rapid rise

in amplification rates. In contrast, the second mode rapid rise in amplification occurs at

R=1945. The sub-harmonic amplification rates increase for the next location, R=2005,

but decrease montonically for R > 2005. However, the sub-harmonic remains unstable to

the last measurement location, R=2120. Similar trends are observed for R > 1975 for the

second mode. Thus, the overall downstream character of the sub-harmonic is similar to

the second mode. However, the maximum amplification rate shifts downstream by about

AR=30 for the sub-harmonic relative to the second mode.

The PSE study of reference 10 indicates that mild secondary instability of the

forced sub-harmonic helical mode occurs at 10% mass flux fluctuations. From Figure 41,

the mass flux is 10% or greater for the last 3 streamwise locations, R > 2060,

corresponding to the sub-harmonic growth observed over the same 3 locations as

observed in Figure 44. However, due to the obliquity of these disturbances, only a

component of the sub-harmonic is measured in the present investigation. Thus, the

possible obliquity of the second mode disturbances in the present experiment cannot be
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ascertained.As aresult,previousPSE[10] andDNSstudies[11,41],whichuse a helical

pair of second mode disturbances as forcing inputs may not be suited for direct

comparison. Rather, PSE or DNS studies using a 2D second mode as the forcing, or

additional experimental measurements, are needed for direct comparisons.

In the following figures, 59-61, the amplification rates as a function of R are

presented. Since the "noise" could not be subtracted from the full CVA output voltages,

the amplitudes over the upstream regions, R < 1910, will approach the constant noise

level of the CVA. Thus, in this region, the amplification rates are zero since the

derivative of a constant is zero. However, these upstream regions, R < 1910, do not

represent points on a neutral stability diagram. Only the region, R > 1910, should be

considered representative of the "true" growth of the flow.

Several amplification rate curves vs. R are presented for a few frequencies in

Figure 59. The selective amplification of particular frequencies as the boundary layer

thickness decreases in the downstream direction is shown. The frequency, f=80 kHz, is

within the frequency band associated with the first mode and, f=254 kHz, is within the

frequency band associated with the second mode. In the linear stability region, R=2020,

the 80 kHz experimental dimensional amplification rate is approximately 4.34/ft,

comparing within 1 I% of the LST result of 4.85/ft. At the location of maximum LST

second mode -¢q, R=2020, the LST [23] dimensional amplification rate is approximately

13.88/ft for f=230 kHz which compares within 7% to the experimental dimensional

amplification rate of 12.89/ft for f=234 kHz. Furthermore, for R < 2120, the location of

maximum amplification rate for the most unstable frequency (i.e. maximum N-factor)

occurs at R = 1975 for both experiment (f=254 kHz) and LST (f=220 kHz). Overall,

these comparisons are relatively good considering the small yaw angle of the model.

Several amplification rate curves vs. R are presented for frequencies associated

with the second mode in Figure 60. Three pairs of frequencies (244,264), (234,273), &
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(225,283)kHz centeredat approximately+10, +20, & +30 kHz about f=254 kHz are

shown along with f=254 kHz. For each frequency pair, the data show that the higher

frequency has a peak amplification rate further downstream than the lower frequency.

These trends conf'u'm the boundary tuning of the disturbances. That is, as discussed

previously, the amplification rates shift to higher frequencies due to the overall decrease

in the boundary layer thickness in the downstream direction.

The maximum amplification rates associated with the first mode, sub-harmonic of

the second mode, and second mode are presented in Figure 61. The maximum

amplification rates were calculated by determining the maximum -a i over the 65-85 kHz

(first mode), 210-290 kHz (second mode), and 110-130 kHz (sub-harmonic) ranges for

each R-location. Over the upstream region, R < 1910, the S/N --- 1 and therefore the

amplification rates are unreliable. Further downstream, the sub-harmonic growth is

similar in character to the second mode, but the maximum amplification rate is shifted

downstream by about AR=30, as previously discussed. However, the sub-harmonic

growth rate is not explosive and is on the order of the second mode growth rate, also

comparing well with PSE [10]. Furthermore, transition onset, R=1960-1990, occurs in a

region where the second mode is dominant and thus transition is not caused by sub-

harmonic secondary instability, also comparing well with PSE [10]. However, relatively

"far" downstream of transition onset, R > 2060, all the amplification rates are

comparable.

Global Characteristics of the Fluctuation Data

The normalized second mode amplitudes are presented as a function of f at 4

select R-locations in Figure 62. Note that Ao represents the amplitudes at the most

upstream location surveyed, R=1610. These normalized results indicate a shift in the

second mode frequency. For the range 1880 < R < 1945, the frequency of the maximum
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normalizedamplitudeoccursat f=223 kHz. However,at R=1975,the frequencyof the

maximumnormalizedamplitudeshiftsto f=254kHz andremainsat this frequencyto the

lastmeasurementlocation,R=2120(notshown). (Note that this frequencyshift is also

observedby comparingFigures52 and53.) The frequencyshift range,R=1945-1975,

compareswell with the transition onset location determinedfrom the thermocouple

measurements,R=1960-1990.

The wavelengths for the second mode and second mode sub-harmonic,

normalizedwith respectto theboundarylayerthickness,arepresentedin Figure63. The

error in k/8 = 4% of the plotted values. The disturbance wavelengths were estimated

assuming the phase velocity is 90% [11] the average (over the range 1610 < R < 2120)

boundary layer edge velocity predicted from CFD. Upstream, 1785 < R < 1945, the

second mode wavelength scales as: _. --- 2.2 5. Further downstream in the transitional

region, 1975 < R < 2120, the second mode wavelength scales as: _, = 2 _i. The shift in k/8

scaling from 2.2 to 2 reflects the shift in frequency previously noted in Figure 62 for R >

1945. For the transitional region, the k _ 2 8 scaling compares well with sharp straight

cone data [6,42]. Over the range, 1975 < R < 2120, the sub-harmonic scales as, k -- 4.3 _i.

This is expected since the sub-harmonic frequency is approximately half the fundamental

(second mode). Since the sub-harmonic is oblique, only a component of the disturbance

is measured and thus the measured frequency is lower than the actual frequency.

Furthermore, the actual phase velocity for the oblique wave is unknown. Thus, the _, =

4.3 8 scaling should be considered approximate.

The integrated growth rates, ln(A/Ao), are presented in figure 64 at select

frequencies in the second mode frequency band. (For a fixed frequency: the LST "N-

factor"=ln(AJAo)+ln(A/A#) where A# represents the amplitude along the lower branch

neutral stability curve and Ao represents the amplitude at R=1785). Two stability regimes
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aresuggestedfrom thedataof Figure64: i) the linearstabilityregime;andii) theweakly

non-linearstability regime.

The linear stability regime is representedby constant,positive slopelines in

Figure64. Thatis,

d--_[ln(A)]= const.> 0

which implies,

therefore,

1 dA =_2_ i > 0A dR

-ai > 0, unstable

which states that constant, positive slope lines in Figure 64 represent unstable regions on

the neutral stability diagram. For the frequency, 255 kHz, with the maximum integrated

growth, the linear stability regime spans the range, 1970 _< R < 2050, while for the

frequency, 210 kHz, with the minimum integrated growth, the linear stability regime

spans the range, 2010 < R < 2120. Thus, the boundaries of the linear stability regime

depend on frequency. However, the downstream boundary of the linear stability regime

extends downstream of R=2045 for all second mode frequencies, 210-290 kHz (255 < f <

290 kHz not shown in Figure 64).

The weakly non-linear regime extends from the downstream end of the linear

stability regime to the location where ln(A/Ao)_0. This downstream asymptote

condition represents the upper branch of the neutral stability curve. For all the curves of

Figure 64, and the additional second mode frequencies not presented, the asymptote

condition is not met. Thus, all second mode frequencies do not extend past the weakly

non-linear stability regime into the strongly non-linear regime.

Overall, the second mode disturbances extend from the linear regime to the

weakly nonlinear regime. As previously discussed in Sections 2.15 and 3.7.1, the

uncalibrated amplification rates should compare well with LST in the linear stability
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regime and with PSE or DNS mass flux amplification rates in the weakly non-linear

regime. Thus, the experimental amplification rates and "N-factors" should compare well

with numerical predictions, provided the 0.2 ° + 0.05 ° windward yaw angle is considered

and the numerical amplification rates are computed along paths similar to the maximum

energy path of the present study. Also, data should only be compared with numerical

data for R > 1910 where S/N > 1.

Note that the change in N-factor for a given frequency is equal to the change in

ln(A/Ao) over a given X or R range, i.e.

-
Thus, experimental data plotted in the form of Figure 54 can be compared to LST ($2)2

data in the linear stability regime. However, as shown in Appendix D, the data of Figure

64 are shifted approximately 30 kHz above the 0 ° case. Furthermore, this frequency shift

was attributed to a corresponding shift in boundary layer thickness. Since each frequency

is tuned to a particular boundary layer, comparing a particular frequency from Ref. 23 (0 °

pitch and yaw) with the present data would not reflect a proper comparison. Thus, the

linear data of Figure 64 should be compared with LST data which has been computed

from a mean flow that accounts for the ---0.2 ° windward yaw angle.

3.8 rn=l/32" Flared-Cone

The rn=l/32" test case is the only blunt test case that showed evidence of a second

mode instability. This test case is discussed in the following three sections: i)

presentation of the surface data; ii) presentation of the boundary layer mean data; and iii)

presentation of the boundary layer fluctuation data. Only uncalibrated mean and

fluctuation data are presented. However, the boundary layer survey region extended from

the upstream, "stable" region to the linear stability region only. Thus, as previously

discussed, the uncalibrated amplification rates should compare well with LST
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Note that one hot-wire was used for all the results presented in this

3.8.1 Surface Data

Figure 65 presents the experimental and computational surface temperatures

along the left ordinate and the flared-cone surface coordinates along the right ordinate.

The experimental surface temperature error is + 0.00247 To** (+ 2 ° R), and the CFD

values represent laminar adiabatic wall temperatures. Over the far upstream region, s/r n <

100, the experimental data are shifted below the CFD data but remain within 0.5% of the

CFD. Further downstream, 100 < sir n < 380, the experimental data remain slightly

below but within 0.3% of the CFD data. At the flare-cone junction, s/r n = 311,

Tw/To**=0.865, comparing well with T_dTo**=0.865 at the same location, R=1537, for the

sharp-tip case. However, the CFD Tw/To**-values at this location are 0.865 and 0.867 for

the sharp-tip and 1/32" test cases, respectively. Thus, for the 1/32" case, the slight shift in

temperature between experiment and CFD is attributed to numerical errors in the 1/32"

CFD data. Over the downstream region, 380 < s/r n < 600, the experimental data are

slightly below the CFD data, but remain within 0.3% of CFD data. For s/r n > 600, the

experimental temperature rises slightly, reflecting the onset of transition. Though this

rise is quite small, the relatively cool model base tends to lower the surface temperature

of the model near the base. Thus, the temperature rise, due to this "barely" transitional

flow, is attenuated. In summary, the experimental temperatures compare well with the

CFD adiabatic wall temperatures, and evidence of transitional flow is suggested.

3.8.2 Boundary Layer Mean Data

The uncalibrated mean CVA output voltage profiles are presented in Figure 66

for 17 streamwise locations. The mean voltages were conducted at the maximum

practicable Vw. The profiles are characteristic of typical mean mass flux profiles.



74

However,these profiles are only representative of the boundary layer edge region, where

the mean voltage variation is only 14%, or less, at any given streamwise location. The

constant voltage region in the boundary layer edge region, 7 < 1"1< 12, becomes larger in

the downstream direction, suggesting a decrease in boundary layer thickness with s/r a as

shown in the next figure.

The experimental (thermal) boundary layer thickness distribution, estimated from

the mean voltages at minimum Vw-Section 2.4.1, are presented in Figure 67. Note that

the CFD [32] (velocity) boundary layer thickness distribution was curve fit using a

second order polynomial, and the experimental error = + 2% of the plotted values. Over

the upstream region, 342 < sir n < 440, the experimental _ is lower than the CFD 5, which

is expected since the boundary layer measurement ray is windward. Further downstream,

450 < sir n < 510, the experimental _i compares well with the CFD 5. For sir n > 520, the

boundary layer thickness increases, reflecting a transitional boundary layer. The

departure of the experimental 8 from the CFD _ occurs over a larger range compared to

the sharp-tip case, yet the sharp-tip case was more unstable. This discrepancy is not

explained by entropy layer swallowing since the entropy layer edge intersects the

boundary layer edge at approximately s/rn=214 [36]. Generally, the data suggest a

laminar flow region for sirn < 500. Furthermore, the maximum difference, 7%, between

experiment and computation occurs at s/r n _ 600, reflecting a transitional boundary layer.

The uncalibrated rms profiles are presented in Figure 68 at the maximum Vw.

Similar to the sharp-tip case, the maximum rms (maximum energy) locations at each

streamwise location, were used as the path for subsequent spectra measurements. For

blunt cones, Stetson [21] showed that, in the unstable region, the generalized inflection

point occurred in the outer boundary layer region, (0.8-0.9)5. Furthermore, the inflection

point was not located at the hot-wire rms maxima. Instead, Stetson's hot-wire rms

maxima corresponded to a maximum in dM/dy (y is the normal distance from the cone
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surface)outside the boundary layer, showing the presence of an unstable entropy layer.

The present measurements, however, were conducted downstream of the estimated

entropy layer swallowing region, s/r n >_ 214, so determination of a possible unstable

entropy layer cannot be ascertained from the present data. The experimental data show

energy maxima locations in the range (0.8-0.9)_i. These locations compare well with the

eigenfunction maxima of stability theory and Stetson's inflection point locations. Overall,

the rapid disturbance growth region occurs in the range 490 < s/r n < 600, corresponding

well with the departure of the experimental and computational boundary layer

thicknesses.

3.8.3 Boundary Layer Fluctuation Data

The fluctuation data are presented in 3 parts: i) the amplitude data; ii) the

amplification rate data; and iii) the global characteristics of the fluctuation data. The

amplitude data provide an overall perspective of the nature of second mode disturbances

and suggest the additional disturbance modes of interest. The amplification rates provide

the local rate of growth of the relevant disturbance modes and aid in establishing the

experimental data in the context of stability theory. Finally, the fluctuation disturbance

wavelengths and integrated growth rates provide a global perspective of the fluctuation

data.

Amplitude Data

The fluctuation spectra are presented in Figures 69 and 70 at the maximum

energy locations. Figure 70 represents the frontal view of the fluctuation spectra of

Figure 69. The instability modes represented in Figures 69 and 70 are associated with the

following frequency ranges: i) 55-70 kHz - first mode; and ii) 205-260 kHz - second

mode. The first mode is clearly discernible in the upstream region, sir n < 390, of Figure

69. But, the first mode downstream growth is not clearly discernible due to the growth of



76

the low-frequencies in a band which extends to --100 kHz at the most downstream

location. The second mode boundary layer tuning observed from Figure 70 is consistent

with the overall decrease in boundary layer thickness observed from Figure 67.

However, the second mode disturbances increase for s/rn > 550, unlike the rapid

disturbance growth region, s/rn > 475, of Figure 68. This discrepancy is explained by

observing the low-frequency growth region, sdrn >__475, of Figure 68 which contributes to

the rms of Figure 68. This low-frequency growth may be attributed to the footprint of the

low-frequency, 0-50 kHz, freestream growth over the range, s/r n >__475. Unlike the sharp-

tip case where the low-frequency growth mimics the second mode disturbance growth,

the low-frequencies of the blunt case grow upstream of the second mode growth region.

The different hot-wires, used for these two cases, are partially responsible for these

differences in low-frequency growth.

Amplification Rate Data

Figures 71-82 present the spectra of the amplification rates, fluctuation

amplitudes, and noise amplitudes at 12 streamwise locations on the model flare. (Note

that the difference in s/r n between successive figures varies for Figures 71-74 but remains

constant, A(S/rn)=16, for Figures 75-82.) The amplification rate data of Figures 71-82

are discussed separately below for the first and second modes.

From Figure 71, the first mode is clearly evident at S/rn=343 in the range 55-70

kHz. At this location the first mode is unstable. However, for 375 < s/r n < 407, the fast

mode remains stable which is consistent with Figure 69. At S/rn---472 the first mode is

barely stable, but becomes unstable at S/rn-488 and remains unstable to the last

measurement, s/m---601. Due to the large growth of the lower frequencies for s/r n > 488,

the first mode and low frequency growths cannot be separated for s/r n > 488.

Over the range, 343 _ sdrn < 520 - Figures 71-77, no clear evidence of the second

mode is established. Even though the S/N > 1 at 220, 240, & 260 kHz, at several
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streamwiselocationswithin this range. (Note that thenarrowbandpeaksat 220,240,

and260kHz are noisepeaksandthusestablishingthesecondmodeexistenceis difficult

in regions where S/N is only slightly greater than 1). However, further downstream,

s/rn=536, the second mode becomes unstable, and is more clearly discernible. At

s/m=552, the amplification rates increase, becoming more unstable; the two separate

narrow band peaks in the amplification rate data at this location are due to the noise peaks

previously discussed. Further downstream, S/rn=569, the amplification rates increase but

remain essentially constant to the next streamwise location, s/m=585. For the last

streamwise location, S/rn=601, the amplification rates decrease even though the second

mode amplitudes increase. Similar to the sharp-tip case, the frequency band associated

with the second mode maximum amplification rates is higher than he frequency band

associated with the second mode amplitudes. Thus, boundary layer tuning is also evident

for blunt-nosed flared-cones.

Several amplification rate curves as a function of R are presented at select

frequencies in Figure 83. The "higher" frequencies, 355 kHz and 390 kHz, are stable and

show no growth as expected. The frequency, 232 kHz, is associated with the second

mode. Upstream, 240 < sir n < 520, the 232 kHz frequency is stable with no growth.

However, for s/r n > 520, the 232 kHz frequency grows rapidly, remaining unstable to the

last measurement location, sir n = 601. The 232 kHz growth rate decreases downstream of

S/rn=575 but remains unstable. The frequency, 61 kHz, is associated with the first mode.

This frequency has distinct troughs at s/rn= 460 & 550. However, at the same 2 sir n

locations, similar troughs occur in the low-frequency band, 0-100 kHz, as shown in

Figure 69. As a result, the 61 kHz data was further smoothed to eliminate the troughs,

and is presented as the solid line in Figure 83. The smoothed curve more clearly

represents the overall trend of the first mode growth but the -cti magnitudes are attenuated

due to the smoothing process. For sir n > 570, the "true" 61 kHz -o. i curve should
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approachthe 61 kHz -0_ i curve represented by the (--) symbols. The 100 kHz data are

representative of the low-frequency growth. Low-frequency growth extends to

frequencies as high as 140 kHz as shown. The smoothing process applied to the 61 kHz

data was also applied for the entire first mode band, 55-70 kHz, to determine the

maximum first mode amplification rates which are presented next.

The maximum amplification rates associated with the first and second modes are

presented in Figure 84. The maximum -tx i were calculated by determining the maximum

-or i at each sir n location over the 55-70 kHz and 205-260 kHz ranges for the first and

second modes, respectively. Both modes are approximately stable for sir n < 450.

However, the first mode was initially unstable for s/rn < 360, as previously shown in

Figure 71; the smoothing process attenuated this small slightly unstable region. On the

other hand, the small second mode unstable region for s/r n < 360 is attributed to noise

since the S/N-_I for sir n < 540. Thus, the inherent problems with smoothing and

calculating where the S/N~I are easily overlooked and must be considered for proper

interpretation of the data. However, downstream of s/rn=540, the second mode grows

rapidly at a rate much larger than the first mode; the less-smoothed first mode data shows

the same trend. Thus, the transitional boundary layer was dominated by second mode

instabilities.

Global Characteristics of the Fluctuation Data

The scaling of the disturbance wavelength as a function of R is presented in

Figure 85. The error in M5 = 4% of the plotted values. The disturbance wavelengths

were estimated assuming the phase velocity is 90% the average (over the s/r n range

shown) boundary edge velocity predicted from CFD. From s/m=536, where the second

mode is barely perceptible, to S/rn=555, where the second mode grows rapidly, the

disturbance wavelength scales as: _, ~ 2.0 5. Further downstream, s/r n >= 585, Z/5 > 2,

but remains less than 2.15. For blunt, straight cone data [21], ;U5=2.24-2.7, spanning
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from laminar to transitional flow. However, in Ref. 21 the phase velocity was

approximated using the boundary layer edge velocity unlike the present study. If the

present k/_5 range, 2.0-2.15, was estimated in the same manner as Ref. 21 then the _

range would be, 2.22-2.39, which is more comparable to the blunt, straight cone data.

Furthermore, in the vicinity of transition onset, the present data compare well with Ref.

21; L/_=2.33 in this region.

The integrated growth rates, ln(A/Ao), are presented in Figure 86 at select

frequencies in the second mode frequency band. (For a fixed frequency: the LST "N-

factor"=ln(A/Ao)+ln(AJA#) where A# represents the amplitude along the lower branch

neutral stability curve and Ao represents the amplitude at s/rn=407). Ao was chosen at

s/rn--407 due to the first mode growth region from 342 < sir n < 390). As previously

discussed, the linear stability region is represented by constant, positive slope lines. For

the most unstable second mode frequency, f=230 kHz, the linear stability regime spans

the range, 550 < s/r n < 600. For the most stable frequency represented in the figure, the

linear stability regime spans the range, 555 < s/r n < 600. The linear stability regime spans

a similar range for all other frequencies associated with the second mode, 205-260 kHz.

In addition, the downstream boundary of the linear stability regime extends to the last

measurement location, s/rn=601. Thus, the non-linear stability regime is not encountered

for the blunt case. Consequently, the experimental amplification rates and "N-factors"

should compare well to LST in the linear stability region, provided the small yaw angle is

considered. The maximum energy path should also be followed numerically, though this

is not essential in the linear stability region where disturbance growth is exponential.
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4 Conclusions

The fast hypersonic boundary layer stability measurements in a quiet tunnel have

been obtained. All test cases were conducted at a freestream Math number of 5.91 and

freestream unit Reynolds number of 2.82x106/ft in the NASA Langley Research Center's

Nozzle Test Chamber Facility. An axisymmetric, quiet Mach 6 nozzle was installed in

the Nozzle Test Chamber for the purpose of this study. All tests were conducted within a

uniform free stream flow with a conical-shaped quiet core. The primary measurements

included schlieren, surface static temperature, and boundary layer traverses. The

boundary layer traverses consisted of point measurements with a single hot-wire using a

novel constant voltage anemometry system.

The following significant conclusions were determined from the flared-cone sharp-tip

measurements including the measurements presented as Appendices D and E.

1. The second mode of instability is the most unstable disturbance mode.

Furthermore, this mode is responsible for transition onset which is estimated in

the range R=1960-1990.

2. The second mode integrated growth rates compare within 1.5-5% of LST in the

linear stability regime.

3. The second mode wavelength is measured to be approximately twice the

boundary layer thickness verifying the boundary layer tuning observed in

conventional tunnels.

4. In the vicinity of maximum amplification of the second mode, the first mode

amplification rates are within 11% of LST despite a 0.2 ° windward yaw

angularity.
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5. Thesub-harmonic(of thesecondmode)rapiddisturbancegrowthregionoccursat

10%massflux fluctuations,comparingwell with PSE. Furthermore,the sub-

harmonicwavelengthscaling is approximatelya factor of 4.3 greaterthan the

boundarylayerthicknessovertherange,1975< R _<2120.

6. Both first and second harmonics of the second mode are present downstream of

the rapid disturbance second mode growth region. Thus, these non-linearities are

not attributed to "high" freestream disturbance levels.

The following significant conclusions were determined from the flared-cone rn=l/32"

measurements.

1. The second mode is the most unstable mode and is responsible for transition

onset.

2. The second mode wavelength is approximately twice the boundary layer

thickness. This scaling is comparable to blunt straight cone data when the same

approximations for the phase velocity are implemented.

The following significant conclusions were determined from a compilation of all the

measurements conducted in this investigation.

1. As wire voltage increases, the CVA output voltage increases with both the total

temperature and mass flux. However, the CVA is more sensitive to mass flux at

"high" wire voltages and more sensitive to total temperature at "low" wire

voltages. The wire voltage is essentially analogous to the wire overheat for CTA.

2. Both the In'st and second modes are present in the linear stability regime for the

straight cone. The first mode growth at f=50 kHz compares reasonably well with

LST over the range, 2060 < R < 2355. The second mode growth at f=180 kHz

compares well with LST over the small range, 2225 < R < 2330.

3. Surface temperature measurements for the flared-cone indicate that the rn=l/16"

and rn=l/8" cases show no evidence of transition. Over the range tested,
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.

1565 < R < 2085 for the rn=l/16" case and 1515 < R < 2050 for the rn=l/8" case,

"graduar' first mode growth is evident, but the second mode disturbances are not

present. These observations suggest that the rn=l/16" and rn=l/8" are "small"

nose-tip bluntnesses for the flared-cone.

The departure of the experimental boundary layer thickness from the CFD occurs

over a larger range compared to the sharp-tip case despite the larger disturbance

growth for the sharp-tip case.
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5 Recommendations for Future Work

The NTC facility used in this investigation has been disassembled, and a new

NTC facility is currently under construction. However, the new NTC will not be able to

accommodate the quiet Mach 6 nozzle used in this study. As a result, the following

recommendations are made for the Mach 8 quiet tunnel which is also currently under

construction.

1. A stability study using a 50-7 ° half-angle straight cone with a sharp-tip is

recommended. Measurements should extend from upstream of the location where

N=5 as predicted by LST (for the most unstable frequency) to downstream of the

linear stability regime, N-10. If measurements over the straight cone do not

extend downstream of the linear stability regime then a flared-cone may be used

for this purpose. A thermal insulator should be installed in the base of the models

that are tested.

2. An automatic compensation CVA should be used to conduct quantitative

measurements. This system should provide the ability to measure at "high" wire-

voltages without incurring a wire burn-out problem.

3. Detailed comparisons of the data obtained from the above experiments as well as

the data of this study should be made with LST, PSE, and DNS. Comparison

between theoretically calculated integrated growth rates with experimentally

measured integrated growth rates should be emphasized. Such a comparison is

less prone to error than comparing amplification rates. This is so, since

theoretical computation of the integrated growth rates should produce less error

than experimental computation of amplification rates from measured integrated

growthrates.
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.

A control experiment introducing a pair of oblique disturbances at frequencies

comparable to the second mode should be conducted. A companion experiment

introducing a pair of oblique disturbances at the sub-harmonic frequency along

with a 2D second mode disturbance is also recommended. A traverse system,

allowing measurements in the azimuthal direction, is needed for this purpose.
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7.2 Appendix B - Axisymmetric Flared-Cone Navier-Stokes

Solutions

The computer code, designated HTC2D, was used to obtain CFD solutions of the

axisymmetric flow past the sharp-tip, flared cone. The HTC2D code solves the

axisymmetric and two-dimensional Navier-Stokes equations with a finite volume

formulation. A multigrid cycling strategy is used to accelerate convergence to steady-

state. The code is described in detail in Reference 32, but a few salient features are

presented here. The HTC2D code is an upwind code. The viscous flux terms are central

differenced to second order accuracy. The inviscid flux terms are upwind biased, using a

blend of flux-difference and flux-vector splitting. Approximate flux Jacobians,

approximate linearization of the viscous terms, and approximate factorizations are used to

obtain an efficient, implicit Gauss-Seidel algorithm for solution of the discretized Navier-

Stokes equations in time. The convergence of the algorithm is enhanced through the use

of a full multigrid cycle method.

A typical convergence history obtained on a 241x145 grid is presented in Figure

A l; here the log residual is plotted as a function of time. (The notation 241x145 denotes

241 and 145 streamwise and surface-normal grid points, respectively.) The residual

decreases approximately 5.5 orders of magnitude in about half a minute. This decrease

in magnitude is sufficient to establish solution convergence. A grid independence study

was also conducted to establish consistency of the solution. The results of this grid

independent study are presented in Figures A l-A4.

The surface static pressures as a function of x are presented in Figure A2 for the

four grids examined. The surface pressures are identical for all grids, suggesting grid

independence in terms of the pressure. However, since the surface pressure is not as
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sensitiveto the grid asother flow properties,thevelocity andtotal temperatureprofiles

werealsoexamined.

The velocity and total temperatureprofiles arepresentedin Figure A3 at three

streamwiselocationsalongthemodelflare. At eachstreamwiselocation,thesolutionfor

the225x113grid differs from thesolutionson theotherthreegrids,especiallyat themore

downstreamlocations. As shownin Figure A4d, the total temperatureprofiles for the

225x129 grid differs from the 225x145 and 241x145 grids, which compare well.

Furthermore,the solutionsfor the 225x145and241x145grids comparewell for x=l l"

and x-15" too. Thus, grid independenceis establishedfor the solutionson thesetwo

grids. Due to the relatively shortCPU times requiredto obtain a solution, the finer

241x145solutionwasusedfor all comparisonswith experimentpresentedin this study.

This grid provided approximately57 point in the boundarylayer over the region of

interest.
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7.3 Appendix C - Transition Onset Estimate

The transition onset location for the flared-cone sharp-tip configuration was

estimated using the recovery factor method of Ref. 37. This method is outlined in the

present Appendix with the aid of Figure A5. The recovery factor, r, is defined as:

r = Taw - T_

Toe - T e
(C1)

where Taw=adiabatic wall temperature, Te=boundary layer edge static temperature, and

Toe--the boundary layer edge total temperature. At the boundary layer edge, the

stagnation temperature is given by:

Toe = 1 + _' - 1 (M e )2 (C2)
T e 2

Combining equations C 1 and C2 to eliminate T e yields:

Ta_....x_w(1 + )'-1 (Me)2)_ 1Toe 2
r = (C3)

- 1 (M e)2
2

Since the total temperature is constant across the conical shock, Toe=To** is known from

the tunnel operating conditions. Taw was assumed equal to the measured surface

temperatures. Although some conduction along the thin-skinned model occurs; this

assumption is justified in the upstream region, X < 12.25". The edge Mach number, Me,

was not measured experimentally and thus this quantity was obtained from the CFD

solutions, described in Appendix B.

The results of equation C3 are presented in Figure A5. Note that the recovery

factor is approximately 0.84 for X < 5" which compares well with the laminar recovery

factor, 0.845. The recovery factor method estimates transition onset as the location where

the two lines, shown in Figure A5, intersect. These two lines are drawn through the
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approximately straight portions of the recovery factor distribution upstream and

downstream of the location of a rapid change in slope. Their intersection is

approximately 16.2" (R=1960) for the flared-cone sharp-tip configuration. In previous

work this method has been shown to work well for a straight cone. In the present work,

the validity of the method was ascertained by comparison with the schlieren and hot-wire

anemometry data.
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7.4 Appendix D - Axisymmetric Flared-Cone Experimental

Data

An additional test was conducted for the sharp-tip case with the model boundary

layer measurement ray aligned as carefully as possible to zero degrees yaw. The yaw

angle for all data presented in this Appendix is 0.1 o + 0.05 ° towards the leeward side.

Furthermore, the data presented in this Appendix were conducted with a new

experimental system that differed from the original system in 4 main aspects: i) a new

CVA with a S/N ratio approximately a factor of 10 larger than the original CVA was used

- also, the new CVA bandwidth was 400 kHz compared to 350 kHz for the original CVA;

ii) a new A/D converter with lower quantization error was used; iii) a new hot-wire

(L/D--150), platinum-10% rhodium, with an increased resistance and thus lower noise

was used; and iv) a new, lower noise filter, with the low-pass cut-off frequency set at

1MHz (opposed to 630 kHz), was used. All of these components allow for an increased

S/N ratio relative to the original experimental system. Furthermore, the higher low-pass

cut-off frequency will not attenuate the harmonic frequency range as much as the original

filtering. The results, using this new system, are presented in Figures A6-A9. (Note that

these data were conducted at Y-0.0531" which was located in the vicinity of the

maximum energy locations.)

Figures A6 and A7 present the fluctuation spectra along a Y=0.053 l" constant

line over the range, 1880 _< R _<2120. The second mode is clearly discernible in the

range, 180-260 kHz, suggesting a 30 kHz decrease in frequency relative to the data

presented in Section 3.7.4 (210-290 kHz). This is consistent with a more leeward angle

since the pressure decreases and the boundary layer thickness increases, resulting in a

decrease in second mode frequency relative to the more windward effect seen in the

spectra presented in Section 3.7.4. Specifically, the present (0.1 o leeward) boundary
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layer thickness is estimatedat approximately 11% greater than the boundary layer

thicknesspresentedin Section3.7.4(0.2° windward). This corresponds well with the

decrease in frequencies of approximately 12% for the present (leeward) spectra relative to

the (windward) spectra presented in Section 3.7.4. (Note that in Fig. 37, the more

windward data is seen to be about 1% lower than that of the axisymmetric CFD data.

This is so, since the thermal boundary layer in the experiment, which is approximately

10% thicker than the velocity boundary layer [32], is reduced by approximately 11% due

to the effect of model yaw.)

From Figure A7, the first harmonic is evident in the range, 410-480 kHz. Though

not clearly discernible in Figure A6, the first harmonic begins growing at R=1990. This

is upstream of the initial growth of the first harmonic as seen in Appendix E for the

windward data. This is also consistent with a more leeward angle since transition moves

upstream along the windward side.

The first harmonic is shown more clearly in figure A8 at the last measurement

location, R=2120. At this streamwise location, the maximum amplitudes for the second

mode and first harmonic occur at 226 kHz and 449 kHz, respectively. Thus, the first

harmonic frequency is approximately twice the fundamental as expected. Furthermore, a

second harmonic of the fundamental is also shown in the figure. The maximum

amplitudes of the second harmonic is 670 kHz which is approximately a factor of 3 larger

than the fundamental, f=226 kHz, as expected. Overall, the larger non-linear region for

this case, relative to the more windward data of Section 3.7.4, is consistent with transition

moving downstream along the windward side of the model.

The "N-factor", or integrated growth rates, are presented at select frequencies in

Figure A9. (To compare LST with the experimental data, the LST N-factor, 6.015, at the

most upstream measurement location was added to the experimental integrated growth

rates). An exponential growth region exist for each frequency shown. For the
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frequencies,215-230kHz, an exponentialgrowth region (i.e. linear stability regime-

constantsloperegion) is shownfor 1880< R _<2060. Over this streamwise range, the

change in N-factor is 3.05 and 2.94 for f=219 kHz and f=230 kHz, respectively. This

compares remarkably well with LST. For f=220 kHz, the change in LST N-factor is 3.10

for the range 1880 ___R < 2060, comparing within 1.5% of the experimental data. The

slope for this frequency also compares well with LST which is presented as the solid line

in the figure. For f=230 kHz, the change in LST integrate growth rate is 3.09 for the

range 1880 < R < 2060, comparing within 5% of the experimental data. In summary,

these results suggest that excellent comparison in terms of integrated growth rates are

obtained in a quiet wind tunnel in the linear stability regime.
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7.5 Appendix E - Windward Flared-Cone Non-linearities

The data of Section 3.7.4 showed no evidence of a harmonic of the second mode.

As discussed in the introduction, the first harmonic of the second mode was seen in

conventional tunnels but PSE calculations indicated no dominance of higher harmonics.

Due to the importance of establishing the possible existence of the first harmonic, an

additional test was conducted for the sharp-tip flared-cone configuration. However, the

maximum Vw was increased above the maximum Vw-value used for the results presented

in Section 3.7.4. This increased Vw increases the sensitivity of the CVA to both mass

flux and total temperature as outlined in Section 3.7.1. This effectively increases the

maximum S/N ratio of the system.

The results of this test are presented in Figures A10 and A11. (Note that Ao

represents the amplitudes of the disturbances at R=1610). The second mode is clearly

discernible in the 210-330 kHz frequency range. For R > 2035 (i.e. the four most

downstream locations shown), the most unstable frequency is 260 kHz, comparing well

with 255 kHz for the Section 3.7.4 fluctuation data. (Note that the scaling of the z-axis,

ln(A/Ao), appears to shift the spectra, at each R-location, downstream by about AR=70

and thus R=2035 appears to be located at R--.2100.) For 2035 < R < 2090, the first

harmonic of the second mode is barely discernible in a small frequency range centered

about 523 kHz. However, the first harmonic most unstable frequency shifts to f=552 kHz

for the most downstream location, R=2120, as clearly shown in Figure A11. In summary,

these data establish the existence of the first harmonic for the sharp-tip flared-cone

configuration with the boundary layer measurement ray aligned at 0.2 ° + 0.05 °,

windward.
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8 Tables and Figures



113

Configuration

Table 1: Experimental Test Matrix

Surface Measurements
Boundary Layer
Measurements

Sch. Temp. Pres. RMS Mean Spectra

X X

X x

X X

X X

x x

Bleed Valves Closed

Flared-Cone, Sharp x

Bleed Valves Open

Straight Cone x

Flared-Cone, Sharp x x

Flared-Cone, rn=l/32" x x

Flared-Cone, rn=l/16" x x

Flared-Cone, rn=l/8" x x X X

X

X

X

X

X

X

Note that the row 2 headings of Sch., Temp., Pres., designate schlieren,

wall static temperature, and wall static pressure measurements.

Table 2: Pitot Pressure Measurement Survey Locations

Xn (in.) Yn (in.)

-2.25-2.25

dXn (in.)

0.2516.76-23.76

Block 2 23.76-30.76 -2.75-2.75 0.25 0.25

0.25

Plane Surve_,ed, Block #

Zn=0, Block 1

30.76-37.76

37.76-44.76

16.76-23.76

-3.00-3.00Block 3

0.25

0.25

Block 4

Zn=_+l.5, Block 1

dYn (in.)

0.25

0.25

0.25

0.25

Block 2 23.76-30.76 -2.25-2.25 0.25 0.25

Block 3 30.76-37.76 -2.50-2.50 0.25 0.25

0.25Block 4 37.76-44.76 -2.50-2.50 0.25
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Table3: RMSMeasurementSurveyLocations

Xn (in.) Yn (in.) dXn (in.)

219.76-27.76 -2.5-2.5

27.76-35.76 -2.5-2.5 2 0.5

-2.5-2.535.76-43.76 2

dYn (in.)

0.5

0.5

Table 4: Wave Trace Measurement Survey Locations

Xn (in.)

22.26-23.76

23.76-31.76

31.76-39.76

-2.5-2.5

-2.5-2.5

dXn (in.)

0.75

4.00

4.00

dYn (in.)

1.25

1.25

1.25
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Table5: X vs.R BoundaryLayer
Measurementlocationsfor
flared-cone,sharp-tip

X (in.) R

10.97 1609.9

11.47 1646.2

11.97 1681.7

12.47 1716.5

12.97 1750.7

13.47 1784.2

13.97 1817.2

14.47 1849.5

14.97 1881.3

15.47 1912,7

15.97 1943.5

16.47 1973.9

16.97 2003.9

17,47 2033,4

17.97 2062.5

18.47 2091.3

Table6: s/rnvs.RBoundaryLayer
Measurementlocationsfor
flared-cone,rn=1/32"

s/r_ R

342.58 1586.9
,roll

358.66 1623.8

374.75 1659.8

390.85 1695,1

406.96 1729.7

423.08 1763.6

439.21 1796.9

455.35 1829.6

471.51 1861.8

487.67 1893.4

503.85 1924.6

520.86 1955.3

536.26 1985.5

552.48 2015.3

568.71 2044.7

584.97 2073.7

601.23 2102.418.97 2119.7
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Table7: sirnvs.R BoundaryLayer
Measurementlocationsfor
flared-cone,rn=1/16"

S#n I R

166.32 1563.8

174.36 1601.1

182.40 1637.6

190.45 1673.4

198.51 1708.4

206.57 1742.7

214.63 1776.4

222.70 1809.5

230.78 1842.0

238.86 1874.0

246.95 1905.5

255.05 1936.5

263.15 1967.0

271.27 1997.1

279.38 2026.8

287.51 2056.0

295.64 2084.9

Table8: s/rnvs.R BoundaryLayer
Measurementlocationsfor
flared-cone,rn=l/8"

S/I" n

78.19

82.21

86.23

90.25

94.28

98.31

102.34

106.38

110.42

114.46

118.50

R

1516.3

1554.8

1592.3

1629.1

1665.0

1700.3

1734.8

1768.6

1801.9

1834.6

1866.7

122.55 1898.3

126.60 1629.5

130.66 1960.1

134.72

138.78

142.85

1990.3

2020.1

2049.5



117

0

0

0



118



119

o CD

o _
OJ o

u_c3
r--,- ET',

O .

c5c_

LC)

,,._ LD
o <D
c5o

c;, (-,3
oc5

c_ d_
CD k_
O ©
O C
c5 m
II II

cY ¢2_

o
Z

O

O
r..)

!

O

O

/6
©



120

o o

E
0

r_

°_

0
0

(.)

0
r..)

!

,¥

o_



121

x
X

X
X
X
X
X
X
X
X
X
x
x
x

m

0

0
0
!

0

°_

._

('UI.) u_!s_p]_ p_.mseotu- h

!



122

O

(D

O

(D

O
¢O

!

m

,i5

O0
° _,,,i



123

1::
0

O

00 ,-
"1-11.

E

E

<

<

ra_

C_

r_

o_



124

0

*:::::::::::::::::::::

0

d_

!

_-_
0

o,._ 0

!

L

o_,,_



125

iim

ii

0

=
m



126

II

.Q.

8

\ o
'T"

,/
/

"°_
.,. .mo,_

L_

e_

E
O
t_

¢.

O

e_
©
E

° w,,,_

°_

rj

O

° v,,,,_



127

¢1

>

0 D
0 0

iDle

DO

>

>

Eo
O k
O0

£
>

• 1,,,I

E
O

E

<

g

0

• ,w,_q

IT.



128

T

E
r¢2

r¢'2

o
o

r,.)

m
N
N
O

Z

[.-

N
t_
O

Z

6i

°w,,_



129

O

/

.,. "_"_,_
_,-r

1

_8
I-,,,

A

N

t....

t_
t....

I,-

,.d

O

O

r_
J

O
r,.)

0
°_

o_

o_

o
<



130

iI -'°
a "

.m 0

_,° _ I
_I _a_.

m _

_1 -°

o



131

oO

oO

oO

I ! I

!

I

I !

0

0
II

E

0

0

0

0

E

Z

E

_d



132

0

.,._

"7

It',,.

"7

"7

"7,

0 ,w,,,q

0

0
Oo

x_b
E=

a.X

0v,,U

0

N ""

0

• w,,,I

0

0
Oo

z_

o

II

.,_



133

r,i
t"q

I I

==2;,.,.

0

X

t'_

e¢3

t,.¢3

0
0

II

E

t...,

0

0

0

0
r,.)

E
t_

t_.

r:.:

_0
0,_,i



134



135

c,4

I

I

I

I

°_.._

_D

t,,1
t,q
0

o

o_

0

z
E

LI.



136

ID

.=.

ID

ID
¢..)

t_
t_
O

ID

O

t'-i

t...,

ID

°,ill

O

C',l

° w,,,,l



137

,::5

<

0
r,.)

0

!

¢q

if,
0/)

E

0

0

0

0
*t,--q

2
¢..)

t,r.



138

........................ rn., ............. _. ........... _...._......... i ............. _
¢",1

o o <> <_!

............. _....... rn.cl_ ........ ..,_...: ....... O-----i .............. i .............

o _,

............................................... .O......,¢.rn.._....._ .............
. ¢.q

............. :........................................... _...... ,,,_----moo .......

.............i..........................................:..............i.......;a_= --_

< i i :: kooE

g

<

o

o

©

0

r_

°_

i

0

0

!

c,I
I

c,l
II

o

o

/.i



139

............. •'.-i-

o
o

0

+_,,,i

,,,,,=4

I

0

©

>

>

%)

C_

ID.

0

0

0

(-q

_U



140

oo



141

1 _ ' ' I i I '

__.._ ....................... ._......................................... _,:

!
_.._ ........................ _........................ _,........................ ! ....

e_

II II II
I.._ _ I,_ I= 1,._ _-

........................ I o
J

I i

'! i

'i o
iI

i i
/i ,

i '/
• I

/i
............................................................................... /i_1 ---

:1
, i , i ,

0

0

ow.,,_

"0

o,_,i

!

0
Z

0

;>

0

[..

o_=,_



142

<

II
t...,

.E

O

r._

0
°w,,_

0
,.d

0
°vlU

,v,1

IT.



143

H

;L

cD

E

X

O

O

O

t,q

tD

O
°_,_

/z
t",l

tD

° w,,,_



]44

0

>,

(_CO0)','-'_'CO'_"

i._01.001..001._
',-OJOJCO_O"_''_"

ioll|la

0000000

'-- I I I I I I I I I I

|

I '|,I

_x _ []

i ' ,ii;

i'
°!

..........I--!:......_........................I.......................!........................'........

I i' :l
I

............... ,_'"'-* ...................... _ ....................... _I .................................

:o

:, il
11

I ,' I :, llii , ,, !
I i' I

, i I.............._.,:.._......._..............._.............................................,...........
iI| .i

., ! _

tl:i i
I''i

................... ;"T ............................ '................... :'"I ................... :...........

N

: i

'''1''' '''i'''l' I I

8 0

8

0

o o

o_

°,_

a_ [,.

°_



145

i[lllllll'llll'llll

• < .:+ x _> []
' I :' I

i J i, , !
....................._,..._............_............._..............._........._........_..._.......

; ' , i - !
, i i , i I -

' : " I ¢
,1 I

; ! ,i , ,I J

.................._......i........._-............._.............._..........-_.......-_......'
.' i f ' i ,_

! E / , : f ,: !

: i , , ! , :i
* _ ' I-- I 'i Z I

....._ ......FT ...............:! >" ...._............._i.........I......
' _ I _ , '_"0_, ._, _ _'i

/ , i IF

, =_ ,¢i m
......................... : ..................... , .... k---¢ --'4- ............. _--; ......................../ f _/ ., :, I
r ' i< .+! x ._i _

i , i a iI/ i/ , i , ,i ,

-;_..................._.................;........_......;_............_ ......;_.............

''''i'''' ''''J''''

I¢

r_

e_

t"q



146

_q

I :

s

111 Iii111 I

I I
0

I I I I

0 0

IIII

o

O

oc;

8

II

_J
..=
;)

°_,.q



147

0

0

C_
O0

I 1¢

8 0

o

(-,I 0

• +

.................. ,:.................... .,..................... .- ................... _,,_ _.,,) ]

0 <_ _ c,,l<1 0 0

c',]
<] 0

L_.............................................................Q.......................
C",I

<_ 0
0

.................._.,_
............................................................ _..................... 0 _

0

0i

_. N ..............................................................,_-----O--- oo

._6 < o $

0 0

0
ll|l

0

I I I | i I I I I I I I I I I I I

I
,_" Og C',1 '_
0 0 0 0

I¢11o
[-

¢)
o +.,.+

°_

° _,-,W
.,W,,l

°_

E_

oE!
[--

E_.°

[--

bO
°,_,W

it.



148

0
t"q
,:5

0
e,i

8 0

c5 ,:5 ,:5 ,:5 c5 o

Cq

0

O_ 0

....................................................................................

0

0
............................. _ .......................... _ ..................... 0

0

0

...................................................................................................

0

O _ 0
O

......................................................................................................

0

0
.......Q .................................................... _ ...............

.................... _ ..................... _..................... _..................

0 0 _

0
ill ill ll,itilill I

i I

0

[.T.1

E

0

=
0

° v,,-,f

0

° i,.-_

°,jq

°l,-q

m

[.,T.

° _,,.q

[,.T.



149

O
,D

[-,

o,_=_

O

o.==_

O

E
"C:
_D

I

c_

..=..4

_D

ee_

_D
I,,=,

o _=.=_



150

,.o

oO
0

t"q

..................................................................................... ,i _

.............,......................................._..,..............,..............!.. _

8.

 21g

[.-
!

o

"t:::

E
[-,

ell
[,,I."""



151

°1,,_

[..,
!

r_

0

o

o

°1,,_

°_,,9



152

[...,
!

r._

m

2

0
;>

0

,,5

o

I:;



153

I 0

fllll

iiiiiiii!

0
0

I......................................................i............................i °I t i i i i i l i t t i

E-
l

r_

°,_,i

° _,==i

°p=,l

.1

0

k,t

°p,,_



154

O0

oQ
o o oo o_

,..4

oo| "_

_ X ,_

x x × _
r_

_ ..



155

II II II II

0 F7 + <]

0

c4

_5

0

°w,=_

!

0
°l,--d

o

°m,4

6<

o_



156

_o6
>

if,

ID

.E

o
r_

o
°1,,_

o
,.d

!

ID

2

r_



157

o
0

0

< b

<3 0

i <_ 0

_1 i < o

_'_1_"11_,:,-........_iI.:_l......_...............................................................................< o
...............................................................-<_.....................0 .........................

<1 0

II I I I I I

<3 0

I III I l I I I I I I I I I I I

,'--' t",l

0

o,I

0
0

0
t¢3
0

0

0

0

0

E-l
m.

=

E

0

0

@
.1

[-

0
[.-

_o



158

, , ,,,,i,,,,I ,, I, , ,,,,I,, I,,,,
............. _.............. i............... i.............. _............... ).............. _............... i............

i --_..I :: _ i i i
............. i .............. i..............._[..]_.............. _........... ' ............. _............... i"............

L.I

[]
o

. q D D

........"__ ...............,.._........,.._.........,..........................................:.

0 0 (3 O00(_IDO0 0
,,,,i,,,,I .... i .... i .... i .... i,,,,i,,,,

I I I I I I I

*Iml

c5 _

c5 _

"0 r,_

N

o_ml



159

,,,, ,,,,I,,,,I,,,,I,,,, ,,,,I,,,, ,,,,

i i i i i DI i

i i i i i iD i

[]

iu3 []

............. _.............. 4 ............... F .............. 4............... i .............. _............... I ............

.............,.......................... ..........
_---.__

I I I i I i i

-i



160

I

O0

o_

E

0

0

o_



161

I I I I I

<

[-
!

0
*d==_

0
.I

r..T.1

E

E
°_

0
°_

0

°Iml

;>

0



162

0

I I

<

i t,llq

[.-
!

0

0
0

¢..)

E
£

t.r.,
!

¢,q

t"q
II

_D

0



163

<

•"--. ," 0 0 0 0

E ol t<,<
-- | ....... : ................. .*"................ : .............. : ................. : .......... i""

i ' ....=¢1i _ _ _ '-"fi,,,_..'
.. : ! _ ! ._
i [ : '. : : ,

..............}.................}................i................f..............................._

............. .:.................. _.......... : : : _,

i i ! i i -"_._

e- EE _ _ L._. .t
I- ' _ _ E _ _'.:,'1
1- I ' i _i ...... _':_-.-1g-

/ i"-m 1o

I

I

[-
I

II

0
°_

°i--i

©

°i,-i

<
6-:

.._



]64

<

0

<<
!

!



165

<

cq

0

<<
!

I
I

0

'%
i i i..._ °

B

_. eJ'_ ................................................i..............i.................i.._,3 ....

i : R

---- I_-
i i

!

!

X

I

°F.,I

[-
!

II

L..

0

E
<

.i,,,.i



166

<

I I I 0



167

¢,.q

.<

I

I

I

|

I I I

I

I

0

• _,,,i

I

r._

II

.£

o_,,_

°_,,_

E
.¢

®o

°_,_



168

c5 c_ ¢5 ¢5 _

!



169

¢q

,¢

i J"

i "t -

.......... ' .........................:.................i..............i.................:........J--

y-i i "_:i

!

o

°_

!

o

[..
!

II

0
° w,,,_

t_

t_

©



170

.<

O0

d
I

0

I

I

I

I
i
I

m

i

0

I



171

<

0 0 0 0 0 0 0 0

.I

--. '. i-': ....... i..... !.... _ ---i......._--_o°

--........i....................i.... 2 _ _,t_

- i i :: i i . :._.._J t,.,

- i--_ .:

_-.............!.................i.................i__ _i.............i.................i...........i _

!

0

I

0_

E-
l

("4
H

(-L

°_

E
<
_H
tr_

• _,,,i



172

!

<



173

<

I

O _ O it3 O _

!

°,=,,

I

O
O

O
O
tt_

O

O

c'q

O

°11,_

[.-.
I

t'q
II

_A

_D

O
°_,=_

E

E
<
r_



174

<
0 _ 0 0 0 0 _ 0

1 I I I I

/ i i ! _ i x;IO

.............i.................i.................i................i...... i.........._. _

..............i.................i................._................i._.-_......i.................i........-_-;,--Io

_'" :: ! • i _ ,_ :_ i

_...............,.................i................................i.................i......._'i -_

!

1¢3
C'I



175

r_
0

><
o_

I

0

0

L'-,I

0
Lt_
0
Cq

0
0

Cq

I

. w.,.q

E-l

&

0

0

0
°.--4

°_

E
<
6_

exO
._.._



176

illllJllll

IIII

IIII

F "1 _ ",!

p, !

...................,"" i_/I'i':'''''''_.........i' "'"............................\'_" ......................."-
',, _'_... j_.

......... .% ......... _...................... _ ...................... _....................

,.,....:...,_.._ -x.'

i :
.... i ,, , , l, ,,,

0

I

r_

o

t¢3

£-4

o

o

o

o

E
<



177

0
¢',1

0
tt')

............................_..............................:.................,_---_---i............................

i i '/ i '_

............................, ;......................................_... _...,...................................._ _

! _" : • i
?_ I i : •

........................ _........................................................... ,..................... _ .....: : i J

: i ' I I:::I

i :: i O,s=

......I _._ _ __ _
i -'_ _='_I i i /,, =iooo_ ol i i I,,

....... =_=_I ! _ _,,
,_ O,s_ w I i i ;\,

•- _ = _i ! ! ,._ ._

====I I i ,,' :,'1 __ ___- I I' I ..

C_



178

0 _'3

e¢_ t",l t'-,i o _

t_
t",l

c,I

N

0

t",l

r_

_2

0

0



179

I 1.... I.... I .... b I.... I....

............L_i ...............:..............i...........................t_ .........................

......... o o ± ........................................._ ...............................

O

i :
IIII IIII I111 [111 IIII IIII IIII I

O

eq

cq

O

e',l

O
O

(-,I

,p===l

O0
,p==.(

O

OO
,1=.=4

,p=.,¢

° I,...1

[--
!

D
¢cl

,.t::
Oq

>.

O
• 1,.=1
,¢==_

z,)

v===_

LI.,

O

"t:l

O
(..)

',,D

:::l
ca)

.t..m

t.l.,



180

llllillll'

0

I I I I I I I I I I

\ ,..:: , \'. \!
,.. _......_.......;.........,.;.......:.,\.

I I I I I I I I I I , , , I , , , i i , i

I I I
ee_ t'_ _ 0

0
0

(-q

0
tt_

Cq

§
0

0

O0

0
0
O0

0

r--

J=

_)
=

_J
5.

cJ

_3

L_

o
_3

_0
_J



181

: i



182

II

_g
_D

m

O

O
>.

_D

ow,N

! ! ! /



183

,,,I,,,,I .... I, ,,,I,,,,

,.............._ ............._........................__.........T/ .......
_ i i _-_ i/
_.._. i _ /':
•_ k i _ ...-/.!...::......................

i .............. - .......

I I

0

0
0

0

0
0

0

0
0

0
1¢3

0
0

II

d

o

[..

.1

0

/z

oi,,_



]84

_.r_

;>

o

II
I=

.0

c_



185

I

<

¢.q

H

if,
ex0

E

O

r_

.o

O
,.d

O
o w,,,4

2
¢J

_D



186

I I I I I

<

0
0

t"q

t_

t",l
e_

II
I.=,

I=.,

E
°1-=4

0

0
°w,=4

r_

0
ol=U

¢..)

0

¢}
°_,.q

>

2

_5



187

0
0
0

t-q

0
0
0

0
0
0

,¢

0
0
0

¢xl
0
0
0

0
0
0 0

III III III lll,II

!

0

o_

!

0
0
t¢3

0
0

0
0

N

_J

0
0

0
0

0

II

II

0

o _==,1

t_

©

°_,,i



188

<

_D
O
O

O

Illil|l
, , , i , , , I , ,

I I

I

0

I

r--
(._
H

O .,
_"

_J

_D

_D

M _

0

0 _

.w,i

E
<

0 ,--



189

<

0 0 0 0 0 0
0 0 0 0 _

,I,,,,I , ,I,,, ,,,,I,,,.,
i i ----_--._.

........I , I |.............._..........................J ........................_---_ ........

I i . i >"

.......................i.........................i.....................Z ............._-_----:
i i ' _o "

_ _ -

[ _ -
i ' _-"
E ._-'i -

i : ___ "
......................._.........................i........................._ ..................._ ............

! ÷-_-

! ! : i

! ._-

.............i .......... _ ....... ,_

III III III III]1

d

I

I

0_

I

0
0

0

l,,1

t'q

.m...N

0

¢q
¢¢'}

_===_

II

II

f,.=,

c_

C7'

1=..

@

c_

E
<

r"-

o
I...,
m

• _.=.1



190

<

0 _ 0 0

• • •

0 _ 0 0 0 0 0

i I ij

--I: .....................i......................._ .....................!_"-

i _ !2"
.......................!.........................!......................._ .........._.._: ..........

i i t i_.i _ . _" -

i i _ _ -
.......................i.........................i.........................g....-...........=.i_ ...........

................................. i......................................i_-_ ....

j , ':?:
, , , , , _ I _ , , i , , , , ,

I i

I

0
0

=
f,.,

t"-

II

0

o

o_

E
<

r--

=

IT.



191

<

_D
0

0

0 0 0 0
0 0 0 _ 0

0 0 0 0 0
0

,,,, I ,:,,, I,,,, I,,, _,,,, I_,,,_.,___:--'-_._'"_°

4...

...................................................................................._..--..=._.._......

_...(....

< ! --_

<' i ,.. ">

_" ._ _._-J

................................. _.............................................. r_'= .......
i ' "_'

I I | Ill]lll

I

0

I

0

?,

..a..-

I I I I I

!

0

N

=

=

II
e-

II

0
o,_

E
<

o_



192

<



193

0
0

o

o

<
I

- I

I

<

0 0 0 0
0 0 0 0 0

0 0 0 0 0 0

, .................... : ......................... ,,:......................... _--...._;-.-;..--

•

I

°_

I

o
o

o
0

e¢3

N

c-I

0
0

o

=

II

II

o

0

E
<
r_
t_
@

=

LT.



194

0 0

0 0 0

<

t"q

o

< <=
I I

e¢_ cq

> )

o

- I ' -............................................i-_......................-.......r...._---
i ,<

i ' ; r
> : .,j,

i.......................................................................2S_ -

.2_ -.- _" _

......................T........................_.................._ ...................._ ............

.................................-.....................i........................_---_.....
i i, _"

' ' I I ' ' ' I I I I I I I I _ I II I

(_ I

o_

I

C_

C_

0

0
0

0

t,,,,1
=

=

t'q
(._

H

¢J

.=
¢J

"el
2

°1,,_

<
66
r--



195

.<

0
0
0

¢.q

0 O 0 0
0 0 0 0 0

! _ i i '

' _ _ L .i.
- I , I.....................i........................._........................i........_'-

:: :: "'I'" i "-" 0

......................._.........................-.........................: ...................._..._..._ ......

i : 4,:
ii r.,,._._ o

i _-_ -,-.-_ _

...................i.................................._...._" ............

'2

_ i :: :: _.

i i ..4_-

..............................................................

: i _! ---"

'''1'''1' ''1''' ''
I

°_

I

0
0

0

N

=:

(',1

II

tt'3

II

=
0

c)

0_



196

<

0
0

¢'q

0 0 0
o o. o
,_ o o o ,:::5 o

<' <'_1 -I--- i°_t--, : ...................i........................................i......._!---

...............................................].................N ...............<_:._-"......

...................... _,........................ - ............... :...................... _.,._... ..........................................]........_ _-.

.'1

! z I
Illllll

0

!

i
I I I I I I

o 4
I

0

0

c¢3

N

t...,

t"q

0

C,l

II

II

0

E
<

oO

=
e_O



197

,<

0 _ 0 _ _ 0
0 0 0 _

0 0 0 _ 0 0

I

0
0
0

0

0

C_
0
(.-q

C_
0

("4
(._

II

00

II

c.)

C_

0
°1,=_

°1,_1

C_

c_

"C3

C_

<C
.I

00

C_
°!,-i



198

<

('4
0 O 0 0 0 0

c5 ¢:5 c5 c5 c5 c5 o

,,,, I ,!,,, I, ,i,, t,,, ..._,,,, li,, ,;, g
_ _ _ . _ II

I< < I i _ i--'-_ . "=

''t _ _... _i : _ .,_' g r/}

I : ! _. _,

,, ,

....................... " ......................... i ............ ÷ ............... _--_-,_ ...............

- i _ ". _;
,,,iii, . ,,, iii it _ _

°_

i



199

,,,I,,,I,,, ,,,I,,,I,,,I,,,I,,,I,

/

/

, _. ._- :- - _.', . i

.........................._......................................_,_ i...................

0

,,, I,,,I,,, I,,,
I I I

CO CO

, ,, I,,,I,,,I,,,I,
I I I I

04 0 0,1 _ (.0
I I I

0

o,=,_

I

t¢3

re3

0
0

0

0

1¢3

0
e¢3

II
e_

0

p.

0

.<





201

I I I I

............................i[--. 0 _::.__ .......................................................

.0 t

e,i

t 0 i

o,I 0 0o _O

0

0
0

0
C_

0
0o

0

u_

0
u_

0

u_

0
cQ

¢,q
r_

II

.o

0

o

O0



202

0

• I iI I I I i I I I I I ! I I I I I I

........................ -,..._._-,..,_ ........ ?........... _ ." ...... ?........................... ;........

........................_........................................................._...........................i--!t-

,._ e,l e, lm m ,_- __, _1 ("1 _,1 _'1 t'l

I"''I' I tD

........................T.......................................................i.......................!I .......

, , , , i , , , , , , , , i .... i ,
I t I

1¢3 0 _ 0

<

0
t¢3

1¢3

1¢3

0

0
t¢3

0
0

c,I
e¢3

II

0

r_



203

i i I

(l_np!so_I)_OI

i

0

L3

0

E
.v.,_

E-

#
..=

=

o

0

O

Z
.°

<

°F.,q

U I I I I r n i I I I I I I I I _ I I

............. ° ............... . .........................................

r

i.._ -_z_

o i

I z
............. " ..... I I ............. " .............

.... i .... I .... I
I I I I

b
o

0
o

o

0

#

I

.=

Z

N
<

N



204

........................i.............i...........i.........

o o o° iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiiiiiill
d

c_

d

0

_ • • v •

_a
>-

0

0

C_
°t,q

m_

0

0
c_

0

c_

o

°lm_

c_
Z



205

.............i.............i.............!............i........... _. _ _<

i _ :i i ,

0 ....

>-

............•..............._.............:........................._._ -

: ",t ¢',1 ¢'q t"q 1

_ _ : i "

t • d

,_. . I. ,,t .........

_....._.i..............i......_./_ _,__I........;

\i 1':1
i ", ! i i

............---...'=----.:..............i............._............

:: ;x i _
i i'\ : i

............. ."............. :" :._,...... _............. i............

! i ,, i i

t"q

, '1'''I'''

o_

_' _ 0

II

_. _ _=_ _ oo



206

0"_ Cr,, Cr_ C3_ oO c_ c.O oO

k.4

0

0

C_
°_,._

I

0

!

LT.

=-
0

m

r_
°_,_

I,-,
0

LT.

;>
0
U

°°

.<

°1.._

LT.



207

I
0

c5

0

C_

[--.
!

0
r..)

°

_0

- :::IZ

0

0
.,_

<

<



208

I I I I I

c5 c5 c5 o

<

o
o
00

g
t_

0

c_

g

0

I

°,_1

0
c5_

II

¢)

0
_z

o_mq

.<

o,.._



2O9

"T
0

I........ I....... , I,, ......

<

0"_"

_ 0

°w--I



210

IIIIIIIII II lllllillllllllllllllllll II+

0

: 0

41
l

• 0

0

.O.i.............................................................

0

0

ol o

+ oi

0 _ 0 _ 0 _ 0

Z

00

¢xl
o

I

o

0

0

O

o

"0
'-_ 0

o
0 o._

<

U_



211

E-l

0

!

"0

C
0

Z=

C
• 1,,,,q

0

_D

C
0

• ,m,,,_
,k,,,a

<



212

o

E
0

g

I

0
o_





REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0704-0188

Publiceeporl_ngi_Jrderlforthil ¢ollectionOfinformationis elbrrslltedIoIwerigo 1hourperrelpOnlle,irldudingtheti_ fOrrmmlwsnginfn/ctior_,smirchingii_ltng ¢itll Ilol/rcel,
glthenngandmaintair,r_ the_ata needed,andcomplelingandrevmwlngtheooHect_nOf infom-ah¢_.Send_¢o_,antl ¢e.;Mm:ltngthqlImazkmitltimim _r _ _ li_ o(
_klCllOn Of!nformalton,includingsug_s.tlonslOrreducingth=sb_rden,to WlmhmgtonHeadqulrlemSeP4celkOiranlOrlllllfol"!m'otwmtlonOl::QratlOn|andRe90¢11,121SJeffem0nDev_
Hmghway, Suite 1204,Adlngton, VA _-_2-4302, andtothe OfficeOfManagementandBudge(,PlperttcwkReductionProject(0704-01M), Wmmmgton,DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT OATE 3. REPORT TYPE AND OATES COVERED

January 1996

4. _TLE AND SUBTITLE

Hypersonic Boundary Layer Stability Experiments

Quiet Wind Tunnel with Bluntness Effects

5. AUTHOR(S)

Jason T. Lachowicz

Ndaona Chokani

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRES_ES)

North Carolina State University

Raleigh, NC 27607

9. SPONSORINGIMONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681,0001

Contractor Report

in a

WU

5. FUNDING NUMBERS

G NCCI-183

505-59-50-02

5. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-198272

11. SUPPLEMENTARY NOTES

Langley Technical Monitor:

Final Report

S. P. Wilkinson

1_. DISTRIBU_ON I AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category - 02

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Hypersonic boundary layermeasurements over a flaredcone were conducted in a Math 6 quiet wind tunnel at a
fi'eestreamunit Reynolds numberof 2.82 million/fL This Reynolds numberprovided laminar-to-lransitionalflow over the
cone model in a low-disturbanceenvitonmenL Fore interchangeablenose-tips, including a sharp-tip,were tested. Point
measurements with a single hot-wire using a novel constant voltage anemometer were used to measure the boundary layer
disturbances. Surface temperature and schlieren measurements were also conducted to characterizethe transitionalstateof
the boundary layer and to identify instability modes.

Results suggest that second mode disturbances were Lhe most unstable and scaled with the boundary layer thickness.

The second mode integramd growth rates compared well with linear stability theory in the lineax stability regime. The

second mode is responsible for transition onset despite ,he existence of a second mode sub-harmonic. Tl_ sub-harmonic

disturbance wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of

the fundamental suggests that non-linear disturbances are not associated with "high" free stream disturbance levels.

Nose-tip radii greater than 2.7% of the base radius completely stabilized the second mode.

14. SU_ECTTERMS

Hot-Wire Anemometry Hypersonic

Stability Quiet Wind Tunnel

Transition

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-O1-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

!19. SECURITY CLASSlFI CATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

226

16. PRICE CODE

All

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Pr_mbed IWAN_ Std. z_-t$
2tm-102






